In this highly popular symposium event, fundamental EMC modeling approaches and simulation methods are illustrated through a series of interactive computer demonstrations. Various computational electromagnetic (CEM) modeling techniques will be demonstrated illustrating their application to simple canonical type problems in order to show how specific EMC problems can be solved. These include the application of the Moment Method (MoM), Uniform Theory of Diffraction (UTD), Ray Tracing Method (RTM), Finite Difference Time-Domain (FDTD), Finite Element Method (FEM), Transmission Line (TL) theory, and other useful methods. Many new demonstrations have been added each year, and an interactive participation during the demonstrations is encouraged.Approximately 10 software demonstrations are planned for this symposium, and each presenter will be allotted a three-hour time slot in which to present their demonstration. Two time slots each will be available on Tuesday and Wednesday, and one time slot on Thursday. The demonstrations will be conducted using general-purpose codes; no codes or tools used in this session may be demonstrated for commercial or promotional purposes*. The computer modeling and simulation demonstrations should continue to focus on various technical areas of interest to the EMC practitioner. A list of potential topics includes:
-
Shielding Effectiveness Simulation Using the FDTD Method
-
Modeling the Shielding Effectiveness Using Integral Equation Techniques
-
Radiation Through Apertures, Gaskets and Joints
-
Large Complex System Analysis Using MLFMA
-
System-Level EMC Antenna Coupling Analysis for Large, Complex Structure Topologies Using Multi-Fidelity Modeling and Simulation Methods
-
Modeling of Simultaneous Switching Noise in High Speed Systems
-
Power Bus Resonance and Associated EMI Simulations for PCBs
-
EMC Simulation Techniques for Printed Circuit Boards
-
Power and Ground Voltage Fluctuations and Effects of Decoupling Capacitors on PCBs
-
FDTD Modeling of DC Power-Busses
-
Emission Environment Modeling and Analysis
-
FEM Analysis of Printed Circuit Board Signal Coupling
-
Model Validation for Electromagnetic Codes
-
Printed Circuit Board Edge Effects
-
Visualization of Fields in Radiated Test Sites
-
Characterization of Test Cells and Measurement Enclosures, Including the Simulation of EMC Chambers Behavior at Low Frequencies
-
Complex Coupling Phenomena
-
DC Power Bus Modeling Using the PEEC Method.
Please note that presenters will be required to bring their own laptop computers. Arrangements can be made with the Co-Chair for use of other A/V aids. If you are interested in having a demonstration considered, please provide the following:
-
Title of Demonstration
-
Abstract (Approximately 50 words)
-
Presenter Name(s), Company Affiliation(s), and city/state/country
-
Contact email address
-
1st and 2nd choice for preferred time period (Tue AM, Tue PM, Wed AM, Wed PM, Thu AM).
* The IEEE EMC Society does not specifically endorse any software code, tool, or technique used in any of the demonstrations. The sponsor of this session, the EMC Society ESAC, reserves the right to cancel any presentation or topic that is deemed to be of a commercial nature at any time prior to or during this session.This input must be received by June 1, 2009. Please send your proposals to Colin Brench at:colin.brench@ieee.org.