New research by engineers at the Yale School of Engineering & Applied Science demonstrates that nanomechanical resonators can operate at much higher amplitudes than previously thought. The results represent an advance in optomechanics, in which the force of light is used to control mechanical devices. The findings could have implications for future communications and sensing technologies. Achieving high-amplitudes in traditional nanoscale mechanical systems has proven difficult because reducing a resonator’s dimensions generally limits how much the resonator can move. Tang’s team shows a way of overcoming the performance limitations of conventional systems.The research team also demonstrates that a tiny silicon structure within an optomechanical system can effectively store information without the aid of steady power supply, thus serving as a mechanical memory device.Among other benefits, optomechancial memory devices can withstand harsher environments than electronic or magnetic memory devices, without losing data. Future technologies containing similar high-amplitude optomechanical resonators might be less sensitive to environmental conditions, such as variations in temperature and radiation. At the same time, high-amplitude resonators might enable more accurate and robust measuring devices.Learn more from Yale.
About the Author
Interference Technology
Established in 1970, Interference Technology helps EMI/EMC engineers find solutions to their various testing, design, application and regulatory issues by publishing articles, news and other practical content. We help suppliers in these areas to find the right customers for their components, materials, test equipment and services through a wide range of marketing services, including lead generation, branding, market research and events. The publication is available in various printed and electronic media formats, with readers in over 60 countries. We also publish issues in local languages in China, Japan and Europe.