
interferencetechnology.com





#### REFERENCE GUIDES | FUNDAMENTALS | EMC TESTING WIRELESS, 5G, & IOT | MILITARY & AEROSPACE | SI, PI, & EMI



© Copyright 2024 Lectrix



## **Powerful Solutions, Racked & Stacked** Maximizing Performance

| Model<br>Number            | Frequency<br>Range         | Rated Power<br>Watts | Gain<br>dB |
|----------------------------|----------------------------|----------------------|------------|
| 10KHz-250                  | MHz, Low Frequent          | v Amplifiers         |            |
| AMP2080B                   | 10kHz-250MHz               | 100                  | 50         |
| AMP2080C-1                 | 10kHz-250MHz               | 150                  | 52         |
| AMP2080C                   | 10kHz-250MHz               | 300                  | 55         |
| AMP2080D                   | 10kHz-250MHz               | 600                  | 58         |
| 80-1000N                   | 1Hz, VHF, UHF Rang         | e Amplifiers         |            |
| AMP2032                    | 80-1000MHz                 | 300                  | 55         |
| AMP2071-2                  | 80-1000MHz                 | 500                  | 57         |
| AMP2071A-LC                | 80-1000MHz                 | 750                  | 60         |
| AMP2115-LC                 | 80-1000MHz                 | 1300                 | 61         |
| AMP2121-LC                 | 80-1000MHz                 | 2000                 | 63         |
| 700MHz-                    | 6.0GHz, Broadband          | Amplifiers           |            |
| AMP2070C                   | 0.7-6.0GHz                 | 100                  | 50         |
| AMP2070A                   | 1.0-6.0GHz                 | 150                  | 52         |
| AMP2030-LC                 | 1.0-6.0GHz                 | 300                  | 55         |
| AMP2030-600-LC             | 1.0-6.0GHz                 | 600                  | 58         |
| AMP2030D-LC                | 1.0-6.0GHz                 | 750                  | 59         |
| AMP2030LC-1KW              | 1.0-6.0GHz                 | 1000                 | 60         |
|                            | 3.0GHz, SC Band Am         |                      |            |
| AMP2085-1                  | 2.0-8.0GHz                 | 120                  | 51         |
| AMP2085C                   | 2.0-8.0GHz                 | 200                  | 53         |
| AMP2085E-1LC               | 2.0-8.0GHz                 | 250                  | 54         |
| AMP2085E                   | 2.0-8.0GHz                 | 400                  | 56         |
|                            | GHz, High Frequency        |                      |            |
| AMP2118                    | 6.0-18.0GHz                | 40                   | 46         |
| AMP2111                    | 6.0-18.0GHz                | 50                   | 47         |
| AMP2033-LC                 | 6.0-18.0GHz                | 100                  | 50         |
| AMP2065A-LC                | 6.0-18.0GHz                | 200                  | 53         |
| AMP2065B-LC<br>AMP2065E-LC | 6.0-18.0GHz<br>6.0-18.0GHz | 300<br>500           | 55<br>57   |
|                            | z, K-Band, Millimet        |                      | 57         |
| AMP4032                    | 18.0-26.5GHz               | 10                   | 40         |
| AMP4052                    | 18.0-26.5GHz               | 20                   | 40         |
| AMP4065-LC                 | 18.0-26.5GHz               | 40                   | 46         |
| AMP4065A-LC                | 18.0-26.5GHz               | 100                  | 50         |
| AMP4065B-LC                | 18.0-26.5GHz               | 200                  | 53         |
|                            | Iz, Ka-Band, Millime       | ter Amplifiers       |            |
| AMP4072                    | 26.5-40.0GHz               | 10                   | 40         |
| AMP4066LC-1                | 26.5-40.0GHz               | 20                   | 43         |
| AMP4066-LC                 | 26.5-40.0GHz               | 40                   | 46         |
| AMP4066A-LC                | 26.5-40.0GHz               | 100                  | 50         |
| AMP4066B-LC                | 26.5-40.0GHz               | 200                  | 53         |
| 18.0-40                    | .0GHz, Millimeter A        | mplifiers            |            |
| AMP2145A-LC                | 18.0-40.0GHz               | 10                   | 40         |
| AMP2145B-LC                | 18.0-40.0GHz               | 25                   | 44         |
| AMP2145C-LC                | 18.0-40.0GHz               | 50                   | 47         |
| 40.0-50.0G                 | Hz, Q-Band, Millime        | ter Amplifiers       |            |
| AMP4076-1                  | 40.0-50.0GHz               | 5                    | 37         |
| AMP4076A                   | 40.0-50.0GHz               | 20                   | 43         |
| AMP4076B                   | 40.0-50.0GHz               | 40                   | 46         |
| AMP4076C                   | 40.0-50.0GHz               | 80                   | 49         |

**RF & Microwave Amplifiers** 10KHz-75GHz

> Amplifiers CW & Pulse Watts to KW

Versatile Across All Modulation Standards Achieve Immediate Wide Bandwidth Access **Reliable and Durable** Powerful Precision with Class A/AB Linear Design



10KHz-250MHz 3000 Watts





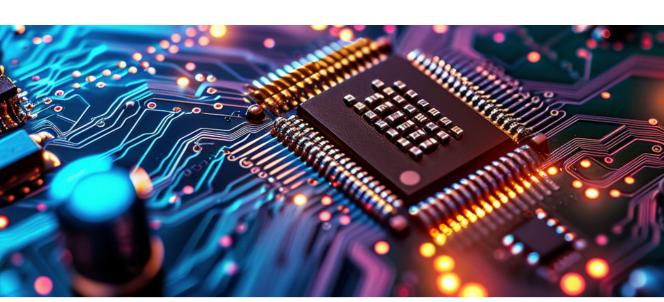
800MHz-6.0GHz 1000 Watts

2.0-8.0GHz 500 Watts

3674 E. Sunset Road, Suite 100, Las Vegas, Nevada 89120 USA Tel: 1-702-534-6564 Email: sales@exoduscomm.com

www.exoduscomm.com




Antennas | Probes | Accessories | Preamplifiers | Low-Loss Cables | Recalibration Services



**Don't Leave home without it.** A.H. Systems provides many models of Portable Antenna Kits, each containing all the necessary Antennas, Current Probes, and Cables to satisfy numerous customer requirements. Excellent performance, portability (compact size and lightweight), along with ease of setup make all of the Antenna Kits your choice for indoor or field testing. Loss and breakage are virtually eliminated as each component has a specific storage compartment within the case. All Antenna Kits are accompanied with a Tripod and Azimuth & Elevation Head, both contained in a



TABLE OF CONTENTS



#### 7 2024 TECHNICAL EDITORIAL BOARD

#### 9 EDITORIAL

**EMC at the Forefront** Tom Braxton

#### **11 | DIRECTORIES**

- 11 2024 EMC Suppliers Guide
- **15 2024 EMC Test Lab Directory**
- 25 EMC/EMI Consultants Directory

#### 26 | STANDARDS & ORGANIZATIONS

- 26 2024 Consolidated Standards
- 44 EMC Standards Organizations

#### 45 | REFERENCES & TOOLS

- 45 Equations, Tools, Calculators
- 48 Common Symbols & Acronyms
- 51 Recommended EMC Books, Magazines & Journals
- 52 LinkedIn Groups

#### 53 EMC FUNDAMENTALS

- 54 Common Commercial, Automotive, Medical, Wireless & Military EMC Standards
- **64 References**
- 67 Demystifying the Math of EMC Interference Technology Editorial Board
- 69 Fundamentals of Electromagnetic Compatibility Ed Sveda

#### 74 EMC TESTING

- 75 Common Commercial EMC Standards
- 80 Useful EMC Testing References
- 81 Automotive Electromagnetic Compatibility (EMC) Standards
- 84 Military Related Documents & Standards
- 85 Millimeter Wave Applications and Promise Mike Violette, P.E.

#### 88 WIRELESS/5G/IOT

- 89 Wireless Groups & Organizations
- 92 Useful Wireless References
- 95 Use of Ferrite-Loaded Absorber to Reduce Wireless Self-Interference Kenneth Wyatt

#### 100 EMI, SI & PI

- 101 SI Metrics That Have Taken Us to 224G Zachariah Peterson
- 104 When Do You Need Low-Dk PCB Laminates? Zachariah Peterson

#### **106 MILITARY & AEROSPACE EMC**

- **107 Military Related Documents and Standards**
- **109 Aerospace Standards**
- **109 References**
- 111 Simultaneous Operations (SIMOPS) of Radio Systems Due to Antenna to Antenna Coupling On an Aircraft David A. Weston

#### **115 | INDEX OF ADVERTISERS**

#### FREE SUBSCRIPTIONS

ITEM, Interference Technology - is distributed annually at no charge to engineers and managers engaged in the application, selection, design, test, specification or procurement of electronic components, systems, materials, equipment, facilities or related fabrication services. Subscriptions are available through www.interferencetechnology.com.

### INTERFERENCE

**Chief Executive Officer** GRAHAM KILSHAW

ASHLEE ZAPATA-MCCANTS

Sr. Director, Content **MIKE CHAMBERS** 

KATE TETI

**Graphic Designer** MARCOS CRUZ

**Delivery Manage** MACKENZIE MANN

## LECTRIX

716 Dekalb Pike #351 Blue Bell, PA 19422 Phone: +1 484-688-0300 info@interferencetechnology.com interferencetechnology.com

#### China, Taiwan, Hong Kong ACT International

Email: lindaL@actintl.com.hk Hong Kong - Mark Mak, +85-22-8386298 Email: markm@actintl.com.hk

JAPAN e-OHTAMA, LTD. Masaki Mori, +81-3-6721-9890 Email: masaki.mori@ex-press.jp

assumes no liability for errors or omissions. Information published herein is based on the latest information . available at the time of publication. Furthermore, the opinions contained herein do not necessarily reflect those of the publisher.

Copyright © 2024 • LECTRIX • ISSN 0190-0943

# EMI Protection Take Control.

Partner with us to protect your mission critical systems and equipment from electromagnetic interference. Space, air, land, and sea.

MIL-qualified, innovative EMI/EMC solutions since 1968 with US manufacturing. From components to complex assemblies. Plus, design and testing services. Learn more by visiting SpectrumControl.com/emi-protection



SpectrumControl.com/emi-protection

The appearance of U.S. Department of Defense (DoD) visual information does not imply or constitute DoD endorsement. © 2024 Spectrum Control Inc. All rights reserved.

EDITORIAL BOARD

### 2024 TECHNICAL EDITORIAL BOARD



#### DAVID A. WESTON iNARTE EMC Engineer

David A. Weston is an electromagnetic compatibility (EMC) consultant and certified National Association of Radio and Telecommunications Engineers (iNARTE) EMC engineer at EMC Consulting Inc. Merrickville, Ontario, Canada. A life member of the Institute of Electrical and Electronics Engineers, Weston has worked in electronic design for 55 years, specializing in the control, prediction, measurements, problem solving, analysis, and design aspects of EMC for the last 44 years.

He is the author of the third edition of the 1,157-page book Electromagnetic Compatibility, Methods, Analysis, Circuits, and Measurement published by CRC press in 2017, as well as numerous papers of a practical nature.



#### ZACHARIAH PETERSON

PCB Design Expert & Electronics Design Consultant

Zachariah Peterson received multiple degrees in physics from Southern Oregon University and Portland State University, and he received his MBA from Adams State University. In 2011, he began teaching at Portland State University while working towards his Ph.D. in Applied Physics. His research work originally focused on topics in random lasers, electromagnetics in random materials, metal oxide semiconductors, sensors, and select topics in laser physics; he has also published over a dozen peer reviewed papers and proceedings. Following his time in academia, he began working in the PCB in-

dustry as a designer and technical content creator. As a designer, his experience focuses on high-speed digital systems and RF systems for commercial and mil-aero applications. His company also produces technical content for major CAD vendors and consults on technology strategies for these clients. In total, he has produced over 2,000 technical articles on PCB design, manufacturing, simulation, modeling, and analysis. Most recently, he began working as CTO of Thintronics, an innovative PCB materials startup focusing on high-speed, high-density systems.

He is a member of IEEE Photonics Society, IEEE Electronics Packaging Society, American Physical Society, and the Printed Circuit Engineering Association (PCEA). He previously served as a voting member on the INCITS Quantum Computing Technical Advisory Committee working on technical standards for quantum computing and quantum electronics. He now sits on the IEEE P3186 Working Group focused on Port Interface Representing Photonic Signals Using SPICE-class Circuit Simulators.



#### MIKE VIOLETTE iNARTE Certified EMC Engineer

Mike is CEO of Washington Laboratories and Director of American Certification Body. He has over 35 years of experience in the field of EMC evaluation and product approvals and has overseen the development of engineering services companies in the US, Europe and Asia. Mike is currently on the Board of Directors of the IEEE EMC Society.

He is a Professional Engineer, registered in the State of Virginia. He has given numerous presentations on compliance topics and is a regular contributor to technical and trade magazines.

EDITORIAL BOARD

### 2024 TECHNICAL EDITORIAL BOARD



#### TOM BRAXTON

iNARTE-Certified EMC Engineer and an iNARTE-Certified ESD Engineer

Tom Braxton has worked in the EMC industry since 1981, with experience at Lucent Technologies / AT&T Bell Laboratories, Shure Incorporated, and as an independent consultant.

Tom is an IEEE Life Senior Member, a past EMC Society Director at Large, and is the author of EMC-awareness articles for online and print publications. He chairs Technical Committee TC1 on EMC Management and was General Chair of the 2005 IEEE International EMC Symposium and Vice-Chair

in 1994, both in Chicago. He is also the Vice-Chair and Program Chair of the EMC Society Chicago Chapter.

An iNARTE-Certified EMC Engineer and an iNARTE-Certified ESD Engineer, Tom holds a BSEET from Purdue University, an MSEE from the Illinois Institute of Technology, and Amateur Radio license WB9VRW.

ITEM

### EMC AT THE FOREFRONT

#### Tom Braxton

iNARTE-Certified EMC Engineer and an iNARTE-Certified ESD Engineer

Electromagnetic compatibility has come a long way. It can trace its origins to the birth of wireless at the dawn of the 20th century when Guglielmo Marconi was told by his early customer, the British Navy, that only one pair of his wireless telegraphs could operate at a time because of mutual interference. His staff hadn't heard of EMC, but they did some re-tuning and stopped the interference.

In 1933, an ad hoc conference was held in Paris to discuss radio interference. That meeting led to the formation of International Special Committee on Radio Interference (French: CISPR), the far-reaching international standards body.

It could be argued that EMC as a science came into being in 1954, when the US military sponsored a conference on radio interference reduction. That conference led to research and more conferences, and ultimately led to the formation of the IEEE EMC Society.

Wherever its starting point, the forward-moving EMC industry keeps marching right alongside the forward-moving technology. With new uses for wireless devices and new materials to build them, the EMC industry has been keeping pace: new standards, new procedures, new equipment, and new strategies to bring them together.

This issue of ITEM brings all of that and more in one volume for 2024. The need for EMC tools and expertise continues to grow as circuit speeds increase and mitigation techniques expand as far as outer space. EMC practice begins at the circuit design level, moves forward to pre-compliance and final compliance testing, and further to mitigation techniques when found to be necessary.

The basics haven't changed. EMC's mathematical foundations are here in clear, readable form, and the standards built on those foundations are outlined for ready reference. The laboratories and suppliers that keep the industry compliant and safe are indexed here as well, supplemented by articles and insights the practicing EMC engineer needs.

Today the EMC testing laboratories are larger and better equipped, and the standards they follow are better focused and more precise. The proliferation of vehicles with collision avoidance and self-driving capability make good EMC practice a vital concern. The EMC industry is more valuable than it has ever been.

This issue of the ITEM catalogs the EMC industry as it grows to fit the current need. No one knows what the future will offer. But no matter where technology takes us, there will be a need for good EMC practice and for professionals with the tools to keep it that way.

# **R&K Company Limited**

### RF & Microwave Power Amplifiers

The World's Most Reliable High Performance Solid-State Amplifiers

Frequency : Up to 6 GHz Power : Up to 10 kW (%Range of R&K FS Series amplifiers)



### R&K Company Limited www.rk-microwave.com

R&K Company Limited is dedicated, through continuous research and development, to producing highly reliable electronics technology products that will contribute to building global prosperity and a better environment.

### FS Series

#### Open/Short Tolerance Virtually Unlimited Survival Time Maximum Output Power

The new FS Series of Class A solid state amplifiers from R&K incorporates an innovative "Fail-Safe Amplifier (FSA)" design. In the event of operational errors or load fluctuations, integrated reverse power protection FSA circuitry ensure the amplifier remains in a safe and damage free operational state under a wide range of load conditions. The novel FSA design provides reverse power protection over a wide impedance range and extended periods of time without shutdown or severe output limitations.

Many other amplifier manufacturers make similar claims. But the new FS amplifier design, which leverages over 40 years of R&K RF design experience, delivers the highest reliability and performance of any impedance tolerant amplifier on the market. Contact your local sales representative or R&K to learn more!

Headquarters

**R&K Company Limited** 

721-1 Maeda, Fuji-City, Shizuoka, 416-8577 JAPAN Tel: +81-545-31-2600 / Fax:+81-545-31-1600 info@rkco.jp CORNES Technologies USA US Sales Partner CORNES Technologies USA

780 Montague Expy. Ste. 506, San Jose, CA 95131 USA Tel: 408-520-4550 / Fax: 408-520-4551 rkproducts@cornestech.com

### 2024 EMC SUPPLIER GUIDE

In this section, we provide a quick guide to some of the top suppliers in each EMC category - test equipment, components, materials, services, and more. To find a product that meets your needs for applications, frequencies, standards requirements, etc., please search these individual supplier websites for the latest information and availability. If you have trouble finding a particular product or solution, email updates@lectrixgroup.com for further supplier contacts.

|                                   | 2024 E                                                                                                   | M          | : รเ     | JPP                 | LIE           | R N         | IAT        | RIX               | SP            | ΟΤΙ                 | IGI               | HT    |                      |           |                |                    |                |                        |                      |         |                      |                               |
|-----------------------------------|----------------------------------------------------------------------------------------------------------|------------|----------|---------------------|---------------|-------------|------------|-------------------|---------------|---------------------|-------------------|-------|----------------------|-----------|----------------|--------------------|----------------|------------------------|----------------------|---------|----------------------|-------------------------------|
| ADVERTISERS                       | WEBSITE                                                                                                  | AMPLIFIERS | ANTENNAS | CABLES & CONNECTORS | CERTIFICATION | CONSULTANTS | COMPONENTS | DESIGN / SOFTWARE | EMI RECEIVERS | FILTERS / FERRITE'S | LIGHTNING & SURGE | MEDIA | SEALANTS & ADHESIVES | SHIELDING | SHIELDED ROOMS | SPECTRUM ANALYZERS | TEST EQUIPMENT | TEST EQUIPMENT RENTALS | TEST EQUIPMENT OTHER | TESTING | TESTING LABORATORIES | TRAINING SEMINARS & WORKSHOPS |
| A.H.<br>SYSTEMS<br>≜ Ŷ ♀ ♥ ♥      | AH Systems, Inc.<br>t: 818-998-0223<br>e: sales@ahsystems.com<br>w: www.ahsystems.com                    | x          | Х        | X                   |               |             |            |                   |               |                     |                   |       |                      |           |                |                    | Х              | x                      | X                    |         |                      |                               |
| Coilcraft                         | Coilcraft<br>t: 800-322-2645<br>e: sales@coilcraft.com<br>w: www.coilcraft.com                           |            |          |                     |               |             | Х          |                   |               | Х                   |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
| EXODUS ADVANCED<br>COMMUNICATIONS | Exodus Advanced<br>Communications<br>t: 702-534-6564<br>e: sales@exoduscomm.com<br>w: www.exoduscomm.com | X          | X        | X                   |               |             |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        | X                    |         |                      |                               |
| FAIR-RITE                         | Fair-rite Products Corp.<br>t: 1-888-FAIRRITE<br>e: ferrites@fair-rite.com<br>w: www.fair-rite.com       |            |          |                     |               |             | X          |                   |               |                     |                   |       |                      | X         |                |                    |                |                        |                      |         |                      |                               |
| Rek                               | R&K Company Limited<br>t: +81-545-31-2600<br>e: info@rkco.jp<br>w: www.rk-microwave.com                  | X          |          |                     |               |             |            |                   | X             |                     |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
| SPECTRUM<br>CONTROL               | Spectrum Control<br>t: 814-474-1571<br>e: info@am.spectrumcontrol.com<br>w: www.spectrumcontrol.com      | X          |          | X                   |               |             | Х          |                   |               | Х                   | X                 |       |                      |           |                |                    |                |                        |                      | X       | X                    |                               |

| S                       |  |
|-------------------------|--|
|                         |  |
| Ρ                       |  |
| P                       |  |
|                         |  |
|                         |  |
| 고                       |  |
| ~                       |  |
| ~                       |  |
| 4                       |  |
| ਨਾਂ                     |  |
| $\overline{\mathbf{x}}$ |  |
|                         |  |
|                         |  |

ITEM

|   | COMPANY                                         | WEBSITE                     | AMPLIFIERS | ANTENNAS | CABLES & CONNECTORS | CERTIFICATION | CONSULTANTS | COMPONENTS | DESIGN / SOFTWARE | EMI RECEIVERS | FILTERS / FERRITE'S | LIGHTNING & SURGE | MEDIA | SEALANTS & ADHESIVES | SHIELDING | SHIELDED ROOMS | SPECTRUM ANALYZERS | TEST EQUIPMENT | TEST EQUIPMENT RENTALS | TEST EQUIPMENT OTHER | TESTING | TESTING LABORATORIES | TRAINING SEMINARS & WORKSHOPS |
|---|-------------------------------------------------|-----------------------------|------------|----------|---------------------|---------------|-------------|------------|-------------------|---------------|---------------------|-------------------|-------|----------------------|-----------|----------------|--------------------|----------------|------------------------|----------------------|---------|----------------------|-------------------------------|
|   | Aaronia AG                                      | www.aaronia.com             | χ          | χ        |                     |               |             |            |                   | χ             |                     |                   |       |                      |           |                | Х                  |                |                        |                      |         |                      |                               |
|   | Advanced Test Equipment<br>Corp. (ATEC)         | www.atecorp.com             | X          | Х        |                     | Х             |             |            |                   | Х             |                     | Х                 |       |                      | X         | Х              | Х                  | Х              | Х                      | Х                    | Х       |                      |                               |
|   | AH Systems, Inc.                                | www.ahsystems.com           | Х          | Х        | Х                   |               |             |            |                   |               |                     |                   |       |                      |           |                |                    | X              | Х                      | Х                    |         |                      |                               |
| A | Altair- US                                      | www.altair.com              |            |          |                     |               | Х           |            | Х                 |               |                     |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
| A | American Certification Body Inc.                | https://acbcert.com/        |            |          |                     | Х             | Х           |            | Х                 |               |                     |                   |       |                      |           |                |                    |                |                        |                      | Х       | Х                    | X                             |
|   | Ametek- CTS Compliance Test<br>Solutions        | www.ametek-cts.com          | X          | Х        |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    | Х              |                        | Х                    |         |                      | Х                             |
|   | Anritsu Company                                 | www.anritsu.com             |            | X        |                     |               |             |            |                   |               |                     |                   |       |                      |           |                | Х                  | Х              |                        | Х                    | Х       |                      |                               |
|   | AR RF/Microwave<br>Instrumentation              | www.arworld.us              | X          | Х        | Х                   |               |             |            | Х                 |               |                     |                   |       |                      |           |                |                    | Х              | Х                      |                      |         |                      |                               |
| В | Beehive Electronics                             | www.beehive-electronics.com |            |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      | Х       |                      |                               |
| D | Bulgin                                          | www.bulgin.com              |            |          |                     | Х             |             |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
|   | Captor Corporation (EMC Div.)                   | www.captorcorp.com          |            |          |                     |               |             |            |                   |               | X                   |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
| С | Coilcraft                                       | www.coilcraft.com           |            |          |                     |               |             | Х          |                   |               | Х                   |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
|   | CPI- Communications & Power<br>Industries (USA) | www.cpii.com/emc            | X          |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
|   | Dassault System Simulia Corp                    | www.3ds.com/                |            |          |                     |               |             |            | Х                 |               |                     |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
| D | Delta Electronics (Americas) Ltd.               | www.delta-americas.com      |            |          |                     |               |             |            |                   |               | Х                   |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
|   | DLS Electronic Systems, Inc.                    | www.dlsemc.com              |            |          |                     |               | Х           |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      |         | Х                    |                               |
|   | Electro Rent                                    | www.electrorent.com         | X          |          |                     |               |             |            |                   | Х             |                     |                   |       | Х                    |           |                | Х                  |                | Х                      |                      |         |                      |                               |
|   | Elite Electronic Engineering Co.                | www.elitetest.com           |            |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      |         | Х                    |                               |
|   | EMC Live                                        | www.emc.live                |            |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      |         |                      | Х                             |
|   | EMC Partner                                     | www.emc-partner.com         |            |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    | Х              |                        |                      |         |                      |                               |
| E | Empower RF Systems, Inc.                        | www.empowerrf.com           | X          |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    |                | Х                      |                      |         |                      |                               |
|   | EM TEST USA                                     | www.emtest.com              |            |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    | Х              |                        |                      |         |                      |                               |
|   | Exemplar Global (iNarte)                        | www.exemplarglobal.org      |            |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      |         |                      | Х                             |
|   | EXODUS Advanced<br>Communications               | www.exoduscomm.com          | X          | X        | Х                   |               |             |            |                   |               |                     |                   |       |                      |           |                |                    | X              |                        |                      |         |                      |                               |
|   | F2 Labs                                         | www.f2labs.com              |            |          |                     | Х             | Х           |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      | Х       | Х                    | X                             |
|   | Fair-Rite Products Corp.                        | www.fair-rite.com           |            |          |                     |               |             | Х          |                   |               |                     |                   |       |                      | Х         |                |                    |                |                        |                      |         |                      |                               |
| F | Fischer Custom<br>Communications                | www.fischercc.com           |            |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        | Х                    |         |                      |                               |
|   | Frankonia Solutions                             | www.frankonia-solutions.com |            |          |                     |               |             |            |                   |               |                     |                   |       |                      | Х         | Х              |                    | Х              |                        |                      |         | Х                    |                               |
| G | Gauss Instruments                               | www.gauss-instruments.com   |            |          |                     |               |             |            |                   | Х             |                     |                   |       |                      |           |                | Х                  |                |                        |                      |         |                      |                               |
| 6 | Gowanda Electronics                             | www.gowanda.com             |            |          |                     |               |             | Х          |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
|   | Haefely                                         | www.haefely.com             |            |          |                     |               |             |            | X                 |               |                     |                   |       |                      |           |                |                    | Х              |                        |                      | Х       |                      |                               |
| H | Heilind Electronics, Inc                        | www.heilind.com             |            |          |                     |               |             |            |                   |               | Х                   |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
|   | HV TECHNOLOGIES, Inc.                           | www.hvtechnologies.com      | Х          | Х        |                     |               |             |            |                   | Х             |                     | Х                 |       |                      |           | Х              | Х                  | Х              |                        | Х                    |         |                      |                               |

| S   |
|-----|
|     |
| ₽   |
| ₽   |
|     |
| Π   |
| R   |
| ~   |
| 2   |
| 2   |
|     |
| RIX |
| X   |
|     |

ITEM

|   | COMPANY                       | WEBSITE                              | AMPLIFIERS | ANTENNAS | CABLES & CONNECTORS | CERTIFICATION | CONSULTANTS | COMPONENTS | DESIGN / SOFTWARE | EMI RECEIVERS | FILTERS / FERRITE'S | LIGHTNING & SURGE | MEDIA | SEALANTS & ADHESIVES | SHIELDING | SHIELDED ROOMS | SPECTRUM ANALYZERS | TEST EQUIPMENT | TEST EQUIPMENT RENTALS | TEST EQUIPMENT OTHER | TESTING | TESTING LABORATORIES | TRAINING SEMINARS & WORKSHOPS |
|---|-------------------------------|--------------------------------------|------------|----------|---------------------|---------------|-------------|------------|-------------------|---------------|---------------------|-------------------|-------|----------------------|-----------|----------------|--------------------|----------------|------------------------|----------------------|---------|----------------------|-------------------------------|
|   | Interference Technology       | www.interferencetechnology.<br>com   |            |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      |         |                      | Х                             |
|   | Intertek                      | www.intertek.com                     |            |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      |         | Х                    |                               |
|   | ITG Electronics               | www.itg-electronics.com              |            |          |                     |               |             |            |                   |               | Х                   |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
|   | Keysight Technologies         | www.keysight.com                     |            |          |                     |               |             |            |                   | X             |                     |                   |       |                      |           |                | Х                  |                | Х                      | Х                    |         |                      |                               |
| K | Kikusui America, Inc.         | www.kikusuiamerica.com/<br>solution/ | Х          |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    | X              |                        |                      |         |                      |                               |
|   | Krieger Specialty Products    | www.kriegerproducts.com              |            |          |                     |               |             |            |                   |               |                     |                   |       |                      |           | Х              |                    |                |                        |                      |         |                      |                               |
|   | Kyocera AVX                   | www.kyocera-avx.com                  |            | Х        | X                   |               |             | Х          |                   |               | Х                   |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
|   | Laird a DuPont Business       | www.laird.com                        |            |          |                     |               |             |            |                   |               | Х                   |                   |       | X                    | Х         |                |                    |                |                        |                      |         |                      |                               |
| H | Langer EMV-Technik            | www.langer-emv.de/en/index           |            |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        | X                    |         |                      |                               |
|   | Magnetic Shield Corp.         | www.magnetic-shield.com              |            |          |                     |               |             |            |                   |               |                     |                   |       |                      | Х         |                |                    |                |                        |                      |         |                      |                               |
|   | Master Bond Inc.              | www.masterbond.com                   |            |          |                     |               |             |            |                   |               |                     |                   |       | X                    |           |                |                    |                |                        |                      |         |                      |                               |
| М | MBP Srl                       | www.mbp.it/en/                       |            |          |                     |               |             |            | Х                 |               |                     |                   |       |                      |           |                |                    |                |                        | Х                    |         |                      |                               |
| M | Microlease                    | www.microlease.com                   | X          |          |                     |               |             |            |                   | X             |                     |                   |       |                      |           |                | Х                  |                | Х                      |                      |         |                      |                               |
|   | Montrose Compliance Services  | www.montrosecompliance.com           |            |          |                     |               | Х           |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
|   | MVG Microwave Vision Group    | www.mvg-world.com                    |            | Х        |                     | Х             |             |            |                   |               | Х                   |                   |       |                      | Х         | Х              |                    |                |                        |                      |         |                      |                               |
|   | Narda Safety Test Solutions   | www.narda-sts.com                    | X          | Х        |                     |               |             |            |                   | X             |                     |                   |       |                      |           |                | Х                  |                |                        | Х                    |         |                      |                               |
| N | Noise Laboratory Co., Ltd.    | www.noiseken.com                     |            |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      |         | Х                    |                               |
|   | NTS                           | www.nts.com                          |            |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      | X       |                      |                               |
| 0 | Ohmite                        | www.ohmite.com                       |            |          |                     |               |             |            |                   | Х             |                     |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
| U | Ophir RF                      | www.ophirrf.com                      | X          |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
|   | Parker Chomerics              | www.chomerics.com                    |            |          |                     |               |             |            |                   |               |                     |                   |       |                      | Х         |                |                    |                |                        |                      |         |                      |                               |
|   | Pearson Electronics           | www.pearsonelectronics.com           |            |          |                     |               |             | Х          |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
|   | Polymer Science, Inc.         | www.polymerscience.com               |            |          |                     |               |             |            |                   |               |                     |                   |       | X                    | X         |                |                    |                |                        |                      |         |                      |                               |
| P | PPG Cuming Lehman<br>Chambers | www.cuminglehman.com                 |            |          |                     |               |             |            |                   |               |                     |                   |       |                      | Х         | X              |                    |                |                        |                      | Х       |                      |                               |
|   | PPG Engineering Materials     | www.dexmet.com                       |            |          |                     |               |             |            |                   |               |                     |                   |       |                      | Х         |                |                    |                |                        |                      |         |                      |                               |
|   | Prana                         | www.prana-rd.com                     | X          |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
|   | Pulse Power & Measurement     | https://ppmtest.com/                 |            |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        | Х                    |         |                      |                               |
| Q | Quell Corporation             | www.eeseal.com                       |            |          | Х                   |               |             |            |                   |               | Х                   | Х                 |       |                      |           |                |                    |                |                        |                      | Х       |                      |                               |
|   | Radiometrics                  | www.radiomet.com                     |            |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      |         | X                    |                               |
|   | R&B Laboratory, Inc.          | www.rblaboratory.com                 |            |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      |         | X                    |                               |
| D | Retlif Testing Laboratories   | www.retlif.com                       |            |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      | X       | X                    | Х                             |
| R | <b>RECOM Power GmbH</b>       | www.recom-power.com                  |            |          |                     |               |             |            |                   |               | Х                   |                   |       |                      |           |                |                    |                |                        |                      | Х       |                      |                               |
|   | RF Consultant                 | www.rf-consultant.com                |            |          |                     |               | X           |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
|   | <b>RIGOL</b> Technologies     | www.rigolna.com                      | Х          |          |                     |               |             |            |                   | Х             |                     |                   |       |                      |           |                | Х                  | X              |                        | Х                    |         |                      |                               |

| S      |  |
|--------|--|
|        |  |
|        |  |
| Ť      |  |
| Ē      |  |
|        |  |
|        |  |
| ~      |  |
| 7      |  |
| 2      |  |
| 4      |  |
|        |  |
| 2      |  |
| $\sim$ |  |
|        |  |

|   | COMPANY                                 | WEBSITE                                                                      | AMPLIFIERS | ANTENNAS | CABLES & CONNECTORS | CERTIFICATION | CONSULTANTS | COMPONENTS | DESIGN / SOFTWARE | EMI RECEIVERS | FILTERS / FERRITE'S | LIGHTNING & SURGE | MEDIA | SEALANTS & ADHESIVES | SHIELDING | SHIELDED ROOMS | SPECTRUM ANALYZERS | TEST EQUIPMENT | TEST EQUIPMENT RENTALS | TEST EQUIPMENT OTHER | TESTING | TESTING LABORATORIES | TRAINING SEMINARS & WORKSHOPS |
|---|-----------------------------------------|------------------------------------------------------------------------------|------------|----------|---------------------|---------------|-------------|------------|-------------------|---------------|---------------------|-------------------|-------|----------------------|-----------|----------------|--------------------|----------------|------------------------|----------------------|---------|----------------------|-------------------------------|
|   | R&K Company Limited                     | www.rk-microwave.com                                                         | Х          |          |                     |               |             |            |                   | X             |                     |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
| R | Rohde & Schwarz GmbH & Co. KG           | www.rohde-schwarz.com/de                                                     | Х          | X        |                     |               |             |            |                   | X             |                     |                   |       |                      | X         | X              | Х                  | Х              |                        |                      |         |                      |                               |
|   | Rohde & Schwarz USA, Inc.               | www.rohde-schwarz.com                                                        | Х          | Х        |                     |               |             |            |                   | X             |                     |                   |       |                      | X         | X              | Х                  | Х              |                        |                      |         |                      |                               |
|   | Schaffner EMC, Inc.                     | www.schaffner.com                                                            |            |          |                     |               |             | Х          |                   |               | Х                   |                   |       |                      |           |                |                    |                |                        |                      | Х       | Х                    |                               |
|   | Schurter, Inc.                          | www.schurter.com                                                             |            |          | Х                   |               | X           | Х          |                   |               | Х                   |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
|   | Schwarzbeck Mess-Elektronik             | www.schwarzbeck.com                                                          |            | Х        |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
|   | Select Fabricators                      | www.select-fabricators.com                                                   |            |          |                     |               |             |            |                   |               |                     |                   |       |                      | Х         | X              |                    |                |                        |                      |         |                      |                               |
| S | Siglent Technologies                    | www.siglentna.com                                                            |            |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    | Х              |                        |                      |         |                      |                               |
| 3 | Signal Hound                            | www.signalhound.com                                                          |            |          |                     |               |             | Х          |                   | X             |                     |                   |       |                      |           |                | Х                  |                |                        |                      | Х       |                      |                               |
|   | Spectrum Control                        | www.spectrumcontrol.com                                                      | Х          |          | Х                   |               |             | Х          |                   |               | Х                   | Х                 |       |                      |           |                |                    |                |                        |                      | Х       | Х                    |                               |
|   | Solar Electronics                       | www.solar-emc.com                                                            |            | Х        |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
|   | Spira Manufacturing Corp.               | www.spira-emi.com                                                            |            |          |                     |               |             |            |                   |               |                     |                   |       |                      | Х         |                |                    |                |                        |                      |         |                      |                               |
|   | Standex Electronics                     | www.standexelectronics.com                                                   |            |          |                     |               |             | Х          |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
|   | TDK                                     | www.tdk.com                                                                  |            |          |                     |               |             | Х          |                   |               | Х                   |                   |       |                      |           | Х              |                    |                |                        | Х                    |         |                      |                               |
|   | Tektronix                               | www.tek.com                                                                  |            |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    | Х              |                        |                      |         |                      |                               |
|   | Teledyne LeCroy                         | www.teledynelecroy.com                                                       |            |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    | Х              |                        |                      |         |                      |                               |
|   | TESEQ Inc.                              | www.teseq.com                                                                |            |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    | Х              |                        |                      |         |                      |                               |
|   | Test Equity                             | www.testequity.com                                                           | Х          |          |                     |               |             |            |                   | Х             |                     |                   |       |                      |           |                | Х                  |                | Х                      |                      |         |                      |                               |
| T | Thurlby Thandar (AIM-TTi)               | www.aimtti.com                                                               |            |          |                     |               |             |            |                   | Х             |                     |                   |       |                      |           |                | Х                  |                |                        |                      |         |                      |                               |
| I | Toyotech (Toyo)                         | www.toyotechus.com/emc-<br>electromagnetic-compatibility/                    | Х          | Х        |                     |               |             |            |                   | Х             |                     |                   |       |                      |           |                | Х                  |                |                        |                      |         |                      |                               |
|   | Transient Specialists                   | www.transientspecialists.com                                                 |            |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    |                | Х                      |                      |         |                      |                               |
|   | TRSRenTelCo                             | www.trsrentelco.com/<br>categories/spectrum-<br>analyzers/emc-test-equipment | Х          | Х        |                     |               |             |            |                   | X             |                     |                   |       |                      |           |                | Х                  | Х              | Х                      |                      | Х       |                      |                               |
| v | Vectawave Technology                    | www.vectawave.com                                                            | Х          |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      |         |                      |                               |
|   | V Technical Textiles / Shieldex US      | www.vtechtextiles.com                                                        |            |          |                     |               |             |            |                   |               |                     |                   |       |                      | X         |                |                    |                |                        |                      |         |                      |                               |
|   | Washington Laboratories                 | www.wll.com                                                                  |            |          |                     | X             | Х           |            | Х                 |               |                     | Х                 |       |                      |           |                |                    |                |                        |                      | Х       | Х                    | Х                             |
|   | Windfreak Technologies                  | www.windfreaktech.com                                                        |            |          |                     |               |             |            |                   |               |                     |                   |       |                      |           |                |                    | Х              |                        |                      | Х       |                      |                               |
| W | Würth Elektronik eiSos GmbH<br>& Co. Kg | www.we-online.com                                                            |            | Х        | X                   |               |             | Х          | Х                 |               | Х                   | X                 |       |                      | X         |                |                    |                |                        |                      |         |                      | X                             |
|   | Wyatt Technical Services                | www.wyatt-tech.net                                                           |            |          |                     |               | Х           |            |                   |               |                     |                   |       |                      |           |                |                    |                |                        |                      |         |                      | X                             |
| X | XGR Technologies                        | www.xgrtec.com                                                               |            |          |                     |               |             |            |                   |               |                     |                   |       |                      | Х         |                |                    |                |                        |                      |         |                      |                               |

### 2024 EMC TEST LAB DIRECTORY

WHEREVER YOU ARE IN THE UNITED STATES you now have access to local testing facilities. We have created an easy-touse directory of national labs and their services grouped alphabetically by state and city, so that our readers can identify labs closest to them. We have strived to make this directory as accurate as possible; our goal is to have the most concise, informative, and up-to-date information. E-mail any additions, revisions, and suggestions to updates@lectrixgroup.com.

| US              | A                                                                       |                | BELLCORE/TELCORDIA | CB/CAB/TCB CB/CAB/TCB | SNOL      | emp/lightning effects |     | EURO CERTIFICATIONS | FCC PART 15 & 18 | FCC PART 68 | NITY     | LIGHTNING STRIKE | MIL-STD 188/125 | MIL-STD 461 | NVLAP/A2LA APPROVED | PRODUCT SAFETY | RADHAZ TESTING | RS103 > 200 V/METER | REPAIR/CALIBRATION | RTCA D0-160 | SHIELDING EFFECTIVENESS | SI      |
|-----------------|-------------------------------------------------------------------------|----------------|--------------------|-----------------------|-----------|-----------------------|-----|---------------------|------------------|-------------|----------|------------------|-----------------|-------------|---------------------|----------------|----------------|---------------------|--------------------|-------------|-------------------------|---------|
| CITY/STATE      | COMPANY NAME / WEBSITE                                                  | PHONE #        | BELLC              | CB/CI                 | EMISSIONS | EMP/                  | ESD | EURO                | FCC P            | FCC P.      | IMMUNITY | LIGHT            | WIF-S1          | WIL-S1      | NVLAF               | PROD           | RADH           | RS103               | REPAI              | RTCA        | SHIELI                  | TEMPEST |
| ALABAM          | Ą                                                                       |                |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Huntsville      | EMC Compliance<br>www.emccompliance.com                                 | (256) 650-5261 |                    |                       | •         |                       |     |                     |                  |             |          |                  |                 | •           |                     |                |                |                     |                    | •           |                         |         |
| Huntsville      | National Technical Systems<br>www.nts.com                               | (256) 837-4411 |                    | •                     | •         |                       | •   | •                   | •                | •           | •        |                  |                 | •           | •                   | •              | •              |                     | •                  | •           | •                       |         |
| ARIZONA         |                                                                         |                |                    |                       |           | -                     |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Chandler        | DNB Engineering, Inc.<br>www.dnbenginc.com                              | (480) 405-6160 |                    |                       | •         | •                     | •   |                     |                  |             | •        |                  | •               | •           | •                   |                |                | •                   |                    | •           | •                       |         |
| Mesa            | Compliance Testing, LLC, aka Flom Test Lab<br>www.compliancetesting.com | (480) 926-3100 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 |             | •                   | •              |                | •                   |                    |             | •                       |         |
| Mesa            | Robinson's Engineering Consultants<br>www.robinsonsenterprises.com      | (480) 361-2539 |                    |                       |           |                       |     |                     | Сог              | ntact       | lab f    | or te            | sting           | capo        | abilit              | ies.           |                |                     |                    |             |                         |         |
| Scottsdale      | General Dynamics Missions Systems<br>gdmissionsystems.com/              | (480) 441-3033 |                    |                       |           |                       |     |                     |                  |             |          |                  |                 | •           | •                   |                |                |                     |                    |             | •                       | •       |
| Tempe           | National Technical Systems<br>www.nts.com                               | (480) 966-5517 | •                  | •                     | •         | •                     | •   | •                   | •                | •           | •        | •                | •               | •           |                     |                |                | •                   |                    | •           | •                       |         |
| CALIFORI        | NIA                                                                     |                |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Anaheim         | EMC TEMPEST Engineering<br>http://emctempest.com                        | (714) 778-1726 |                    |                       | •         |                       | •   |                     |                  |             |          | •                |                 | •           |                     |                |                | •                   |                    | •           | •                       |         |
| Brea            | CKC Laboratories, Inc.<br>www.ckc.com                                   | (714) 993-6112 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 |             | •                   | •              |                |                     |                    |             | •                       |         |
| Brea            | Compatible Electronics, Inc.<br>www.celectronics.com                    | (714) 579-0500 | •                  | •                     | •         |                       | •   | •                   | •                | •           | •        |                  |                 | •           | •                   |                |                |                     |                    | •           |                         |         |
| Carlsbad        | NEMKO<br>www.nemko.com                                                  | (760) 444-3500 | •                  | •                     | •         | •                     | •   | •                   | •                | •           | •        | •                | •               | •           | •                   | •              | •              | •                   |                    | •           | •                       |         |
| Costa Mesa      | Independent Testing Laboratories, Inc.<br>www.itltesting.net            | (714) 662-1011 |                    |                       | •         |                       |     | •                   |                  |             | •        |                  |                 | •           |                     |                |                |                     |                    | •           |                         |         |
| Dana Point      | NTS<br>nts.com/ntsblog/venues/nts-dana-point/                           | (949) 429-8602 |                    | •                     | •         | •                     | •   | •                   | •                |             | •        | •                |                 | •           |                     |                |                | •                   |                    | •           |                         |         |
| El Dorado Hills | Sanesi Associates                                                       | (916) 496-1760 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 |             |                     |                |                |                     |                    |             | •                       |         |
| Fremont         | CKC Laboratories, Inc.<br>www.ckc.com                                   | (510) 249-1170 |                    | •                     | •         | •                     | •   | •                   | •                |             | •        | •                |                 | •           | •                   | •              |                | •                   |                    | •           | •                       |         |
| Fremont         | Underwriters Laboratories, Inc.<br>www.ul.com                           | (510) 319-4000 | •                  | •                     | •         |                       | •   | •                   | •                | •           | •        |                  |                 |             | •                   | •              |                |                     |                    |             |                         |         |

| US                   | continued                                                               |                | BELLCORE/TELCORDIA | CB/CAB/TCB CB/CAB/TCB | EMISSIONS | EMP/LIGHTNING EFFECTS |     | EURO CERTIFICATIONS | FCC PART 15 & 18 | FCC PART 68 | IMMUNITY | LIGHTNING STRIKE | MIL-STD 188/125 | TD 461 | NVLAP/A2LA APPROVED | PRODUCT SAFETY | RADHAZ TESTING | RS103 > 200 V/METER | REPAIR/CALIBRATION | RTCA D0-160 | SHIELDING EFFECTIVENESS | EST     |
|----------------------|-------------------------------------------------------------------------|----------------|--------------------|-----------------------|-----------|-----------------------|-----|---------------------|------------------|-------------|----------|------------------|-----------------|--------|---------------------|----------------|----------------|---------------------|--------------------|-------------|-------------------------|---------|
| CITY/STATE           | COMPANY NAME / WEBSITE                                                  | PHONE #        | BELLO              | CB/C                  | EMIS      | EMP/                  | ESD | EURO                | FCC P            | FCC F       | IMMI     | LIGHT            | WIL-S           | WIL-S  | NVLA                | PROD           | RADH           | RS10                | REPA               | RTCA        | SHIEL                   | TEMPEST |
| Fremont              | Elma Electronics, Inc.<br>www.elma.com                                  | (510) 656-3400 |                    |                       | •         |                       |     |                     | •                |             |          |                  |                 |        |                     |                |                |                     |                    |             | •                       |         |
| Fremont              | HCT America<br>http://hctamerica.com                                    | (510) 933-8848 |                    | •                     | •         |                       | •   |                     | •                |             | •        |                  |                 | •      |                     | •              |                |                     |                    | •           |                         |         |
| Fullerton            | DNB Engineering, Inc.<br>www.dnbenginc.com                              | (714) 870-7781 |                    |                       | •         | •                     | •   |                     |                  |             |          | •                | •               | •      | •                   |                |                | •                   |                    | •           | •                       |         |
| Fullerton            | National Technical Systems (NTS)<br>www.nts.com                         | (714) 879-6110 |                    | •                     | •         | •                     | •   | •                   | •                |             | •        | •                | •               | •      | •                   |                |                | •                   |                    | •           | •                       |         |
| Irvine               | 7Layers, Inc.<br>www.7layers.com                                        | (949) 716-6512 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 |        |                     |                |                |                     |                    |             |                         |         |
| Irvine               | Element EMC<br>www.nwemc.com                                            | (949) 861-8918 |                    | •                     | •         |                       | •   |                     | •                |             | •        |                  |                 |        | •                   |                |                |                     |                    |             |                         |         |
| Lake Forest          | Compatible Electronics, Inc.<br>www.celectronics.com                    | (949) 587-0400 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 | •      | •                   | •              |                |                     |                    | •           |                         |         |
| Lake Forest          | Intertek (Lake Forest)<br>www.intertek.com                              | (800) 967 5352 |                    | •                     | •         | •                     | •   | •                   | •                |             | •        |                  |                 |        | •                   | •              |                |                     |                    |             |                         |         |
| Los Angeles          | Field Management Services<br>www.fms-corp.com                           | (323) 937-1562 |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |        |                     |                |                |                     |                    |             | •                       |         |
| Mariposa             | CKC Laboratories, Inc.<br>www.ckc.com                                   | (209) 966-5240 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 | •      | •                   | •              |                |                     |                    |             | •                       |         |
| Menlo Park           | Intertek (Menlo Park)<br>www.intertek.com                               | (800) 967-5352 | •                  | •                     | •         | •                     | •   | •                   | •                |             | •        |                  |                 | •      | •                   | •              |                |                     |                    |             |                         |         |
| Milpitas             | CETECOM Inc.<br>www.cetecom.com                                         | (408) 586-6200 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 |        | •                   | •              |                |                     |                    |             |                         |         |
| Moffett Field        | RMV Technology Group LLC - NASA Ames<br>Research Center: www.esdrmv.com | (650) 964-4792 |                    |                       |           |                       | •   |                     |                  |             |          |                  |                 |        |                     | •              |                |                     |                    |             | •                       |         |
| Mountain View        | Electro Magnetic Test, Inc.<br>www.emtlabs.com                          | (650) 965-4000 |                    | •                     | •         |                       | •   | •                   | •                | •           | •        | •                |                 |        | •                   | •              |                |                     |                    |             |                         |         |
| Newark               | NTS<br>https://www.nts.com/locations/silicon_valley                     | (877) 245-7800 |                    | •                     | •         |                       |     | •                   | •                |             | •        |                  |                 |        |                     | •              |                |                     |                    |             |                         |         |
| North Highlands      | Northrop Grumman ESL<br>www.northropgrumman.com                         | (916) 570-4340 |                    |                       | •         |                       | •   |                     | •                |             | •        |                  |                 | •      |                     |                |                |                     |                    | •           | •                       | •       |
| Orange               | G & M Compliance, Inc.<br>www.gmcompliance.com                          | (714) 628-1020 | •                  | •                     | •         | •                     | •   | •                   | •                | •           | •        | •                | •               | •      | •                   | •              | •              | •                   |                    | •           | •                       | •       |
| Pleasanton           | Intertek (Pleasanton)<br>www.intertek.com                               | (800) 967-5352 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 |        |                     |                |                |                     |                    |             |                         |         |
| Pleasanton           | MiCOM Labs<br>www.micomlabs.com                                         | (925) 462-0304 |                    |                       | •         |                       | •   | •                   | •                |             | •        |                  |                 |        | •                   |                |                |                     |                    |             |                         |         |
| Pleasanton           | TÜV Rheinland of North America, Inc.<br>www.tuv.com                     | (925) 249-9123 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 |        | •                   | •              | •              |                     |                    |             |                         |         |
| Rancho St. Margarita | Aegis Labs, Inc.<br>http://aegislabsinc.com                             | (949) 751-8089 | •                  |                       | •         |                       |     | •                   | •                |             | •        |                  |                 |        | •                   | •              |                |                     |                    |             |                         |         |
| Redondo Beach        | Northrop Grumman Space Tech. Sector<br>www.northropgrumman.com          | (310) 812-3162 |                    |                       | •         | •                     | •   |                     |                  |             | •        |                  | •               | •      |                     |                | •              | •                   |                    | •           | •                       | •       |
| Riverside            | DNB Engineering, Inc.<br>www.dnbenginc.com                              | (951) 637-2630 | •                  |                       | •         |                       | •   | •                   | •                | •           | •        |                  |                 |        |                     | •              |                |                     |                    |             |                         |         |
| Sacramento           | Northrop-Grumman EM Systems Lab<br>www.northropgrumman.com              | (916) 570-4340 |                    |                       | •         |                       | •   |                     | •                |             | •        |                  |                 | •      |                     |                |                |                     |                    | •           | •                       | •       |

| US             | Continued                                                        |                | BELLCORE/TELCORDIA | CB/CAB/TCB CB/CAB/TCB | EMISSIONS | EMP/LIGHTNING EFFECTS |     | EURO CERTIFICATIONS | FCC PART 15 & 18 | FCC PART 68 | IMMUNITY | LIGHTNING STRIKE | MIL-STD 188/125 | TD 461 | NVLAP/A2LA APPROVED | PRODUCT SAFETY | RADHAZ TESTING | RS103 > 200 V/METER | REPAIR/CALIBRATION | RTCA D0-160 | SHIELDING EFFECTIVENESS | FGT     |
|----------------|------------------------------------------------------------------|----------------|--------------------|-----------------------|-----------|-----------------------|-----|---------------------|------------------|-------------|----------|------------------|-----------------|--------|---------------------|----------------|----------------|---------------------|--------------------|-------------|-------------------------|---------|
| CITY/STATE     | COMPANY NAME / WEBSITE                                           | PHONE #        | BELLO              | CB/C                  | EMIS      | EMP/                  | ESD | EURO                | FCC P            | FCC P       | IMML     | LIGHT            | WIL-S           | WIL-S  | NVLA                | PROD           | RADH           | RS10                | REPAI              | RTCA        | SHIEL                   | TEMPEST |
| San Diego      | Intertek (San Diego)<br>www.intertek.com                         | (800) 967-5352 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 |        |                     |                |                |                     |                    |             |                         |         |
| San Diego      | TDK-Lambda Electronics<br>www.us.lambda.tdk.com                  | (619) 575-4400 |                    |                       | •         |                       |     |                     | •                |             | •        |                  |                 |        |                     |                |                |                     |                    |             |                         |         |
| San Diego      | TÜV SÜD America, Inc.<br>www.tuvamerica.com                      | (858) 678-1400 |                    | •                     | •         |                       | •   | •                   | •                |             | •        | •                | •               |        | •                   | •              |                |                     |                    | •           |                         |         |
| Santa Clara    | Montrose Compliance Services, Inc.<br>www.montrosecompliance.com | (408) 247-5715 |                    |                       | •         |                       |     | •                   | •                |             | •        |                  |                 |        |                     | •              |                |                     |                    |             |                         |         |
| Santa Clara    | MET Laboratories, Inc.<br>www.metlabs.com                        | (408) 748-3585 | •                  | •                     | •         | •                     | •   | •                   | •                | •           | •        | •                | •               | •      | •                   | •              |                | •                   |                    | •           | •                       |         |
| Santa Clara    | TÜV Rheinland EMC Test Center<br>www.tuv.com                     | (408) 492-9395 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 |        | •                   | •              | •              |                     |                    |             |                         |         |
| San Jose       | Arc Technical Resources, Inc.<br>www.arctechnical.com            | (408) 263-6486 |                    |                       |           |                       | •   | •                   | •                | •           | •        | •                | •               | •      |                     |                |                | •                   |                    | •           | •                       |         |
| San Jose       | ATLAS Compliance & Engineering Inc.<br>www.atlasce.com           | (866) 573-9742 |                    |                       | •         |                       | •   | •                   | •                |             | •        | •                |                 |        | •                   | •              |                |                     |                    |             | •                       |         |
| San Jose       | EMCE Engineering, Inc.<br>www.universalcompliance.com            | (510) 490-4307 | •                  | •                     | •         |                       | •   | •                   | •                | •           | •        |                  |                 | •      |                     | •              |                | •                   |                    |             |                         |         |
| San Jose       | Safety Engineering Laboratory<br>www.seldirect.com               | (408) 544-1890 |                    |                       |           |                       |     | •                   |                  |             |          |                  |                 |        |                     | •              |                |                     |                    |             |                         |         |
| San Jose       | Underwriters Laboratories, Inc.<br>www.ul.com                    | (408) 754-6500 | •                  |                       | •         |                       | •   | •                   | •                | •           | •        |                  |                 |        | •                   | •              |                |                     |                    |             | •                       |         |
| San Marcos     | RF Exposure Lab, LLC<br>www.rfexposurelab.com                    | (760) 471-2100 |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |        | •                   |                | •              |                     |                    |             |                         |         |
| Sunnyvale      | Bay Area Compliance Labs.<br>www.baclcorp.com                    | (408) 732-9162 | •                  | •                     | •         | •                     | •   | •                   | •                | •           | •        |                  |                 |        | •                   | •              |                |                     |                    |             |                         |         |
| Sunol          | ITC Engineering Services, Inc.<br>www.itcemc.com                 | (925) 862-2944 |                    |                       | •         |                       | •   | •                   | •                | •           | •        |                  |                 | •      | •                   | •              |                | •                   |                    |             |                         |         |
| Trabuco Canyon | RFI International www.rfiinternational.com                       | (949) 888-1607 |                    |                       | •         |                       |     |                     | •                | •           | •        |                  |                 |        |                     | •              |                |                     |                    |             |                         |         |
| Union City     | MET Laboratories, Inc.<br>www.metlabs.com                        | (510) 489-6300 | •                  | •                     | •         |                       | •   | •                   | •                | •           | •        | •                |                 | •      | •                   | •              |                | •                   |                    | •           | •                       |         |
| COLORA         | 00                                                               |                |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |        |                     |                |                |                     |                    |             |                         |         |
| Boulder        | Ball Aerospace & Technology Corp.<br>www.ballaerospace.com       | (303) 939-4618 |                    |                       | •         |                       | •   |                     |                  |             | •        |                  | •               | •      |                     |                |                | •                   |                    | •           | •                       |         |
| Boulder        | Intertek (Boulder)<br>www.intertek.com                           | (800) 967-5352 |                    | •                     | •         | •                     | •   | •                   | •                |             | •        |                  |                 | •      | •                   | •              |                |                     | •                  |             |                         |         |
| Denver         | Element<br>www.element.com                                       | (720) 340-7810 |                    |                       |           |                       |     |                     | Con              | tact I      | ab f     | or te            | sting           | cap    | abili               | ties.          |                |                     |                    |             | _                       |         |
| Lakewood       | Electro Magnetic Applications, Inc.<br>www.ema3d.com/location/   | (303) 980-0070 |                    |                       | •         | •                     | •   |                     |                  |             |          | •                |                 |        |                     |                |                |                     | •                  |             |                         |         |
| Longmont       | NTS<br>www.nts.com/location/longmont-co-vista-view/              | (303) 776-7249 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 | •      | •                   |                |                |                     |                    | •           | •                       |         |
| CONNEC         |                                                                  |                |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |        |                     |                |                |                     |                    |             |                         |         |
| Newtown        | TÜV Rheinland of North America, Inc.<br>www.tuv.com              | (203) 426-0888 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 |        | •                   | •              | •              |                     |                    |             |                         |         |

| US             | Continued                                                                  |                | BELLCORE/TELCORDIA | CB/CAB/TCB CB/CAB/TCB | EMISSIONS | EMP/LIGHTNING EFFECTS |     | EURO CERTIFICATIONS | FCC PART 15 & 18 | FCC PART 68 | IMMUNITY | LIGHTNING STRIKE | MIL-STD 188/125 | MIL-STD 461 | NVLAP/A2LA APPROVED | PRODUCT SAFETY | RADHAZ TESTING | RS103 > 200 V/METER | REPAIR/CALIBRATION | RTCA D0-160 | SHIELDING EFFECTIVENESS | TEMPEST |
|----------------|----------------------------------------------------------------------------|----------------|--------------------|-----------------------|-----------|-----------------------|-----|---------------------|------------------|-------------|----------|------------------|-----------------|-------------|---------------------|----------------|----------------|---------------------|--------------------|-------------|-------------------------|---------|
| CITY/STATE     | COMPANY NAME / WEBSITE                                                     | PHONE #        | BELL               | CB/C                  | EMIS      | EMP,                  | ESD | EUR(                | FCC              | FCC         | IMM      | LIGH             | WIL-9           | WIL-9       | NVL/                | PROI           | RADI           | RSIC                | REPA               | RTC/        | SHIE                    | TEM     |
| FLORIDA        |                                                                            |                |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Lake Mary      | Test Equipment Connection<br>www.testequipmentconnection.com               | (800) 615-8378 |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     | •                  |             |                         |         |
| Newberry       | Timco Engineering, Inc.<br>www.timcoengr.com                               | (352) 472-5500 |                    | •                     | •         |                       | •   | •                   | •                | •           | •        |                  |                 |             | •                   | •              |                |                     |                    |             |                         |         |
| Orlando        | NTS<br>www.nts.com/location/orlando-fl-emi/                                | (407) 313-4230 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 | •           | •                   |                |                | •                   |                    | •           |                         |         |
| Tampa          | TÜV SÜD America, Inc.<br>www.tuv-sud-america.com/us-en                     | (813) 284-2715 | •                  | •                     | •         | •                     | •   | •                   | •                |             | •        | •                |                 | •           | •                   | •              |                | •                   |                    | •           | •                       |         |
| GEORGIA        |                                                                            |                |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Alpharetta     | EMC Testing Laboratories, Inc.<br>www.emctesting.com                       | (770) 475-8819 |                    |                       | •         |                       | •   |                     | •                | •           | •        |                  | •               |             |                     | •              |                |                     |                    |             | •                       |         |
| Alpharetta     | U.S. Technologies, Inc.<br>www.ustechnologies.com                          | (770) 740-0717 | •                  |                       | •         |                       | •   | •                   | •                | •           | •        | •                |                 |             | •                   | •              |                |                     |                    | •           | •                       |         |
| Duluth         | Intertek (Duluth)<br>www.intertek.com                                      | (800) 967-5352 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Peachtree      | Panasonic Automotive: https://na.panasonic.<br>com/us/automotive-solutions | (770) 487-3356 |                    |                       | •         |                       | •   |                     |                  |             | •        |                  |                 |             | •                   |                |                |                     |                    |             |                         |         |
| Suwanee        | SGS North America<br>www.sgsgroup.us.com                                   | (770) 570-1800 |                    |                       | •         |                       | •   | •                   | •                |             | •        |                  |                 |             | •                   | •              |                |                     |                    | •           |                         |         |
| ILLINOIS       |                                                                            |                |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Downers Grove  | Elite Electronic Engineering, Inc.<br>www.elitetest.com                    | (630) 495-9770 | •                  | •                     | •         | •                     | •   | •                   | •                | •           | •        | •                | •               | •           | •                   | •              | •              | •                   | •                  | •           | •                       |         |
| Mundelein      | Midwest EMI Associates, Inc.<br>www.midemi.com                             | (847) 393-7316 |                    |                       | •         |                       | •   | •                   | •                |             | •        |                  |                 | •           |                     | •              |                |                     |                    | •           | •                       |         |
| Northbrook     | Underwriters Laboratories, LLC.<br>www.ul.com                              | (847) 272-8800 | •                  | •                     | •         |                       | •   | •                   | •                | •           | •        |                  |                 |             | •                   | •              |                |                     |                    |             | •                       |         |
| Mount Prospect | National Technical Systems NTS<br>www.nts.com                              | (847) 934-5300 | •                  | •                     | •         | •                     | •   | •                   | •                |             | •        | •                |                 | •           | •                   | •              |                |                     |                    | •           | •                       |         |
| Poplar Grove   | LF Research EMC Design & Test Facility<br>www.lfresearch.com               | (815) 566-5655 |                    |                       | •         | •                     | •   | •                   | •                |             | •        | •                |                 | •           |                     | •              |                | •                   | •                  | •           | •                       |         |
| Rockford       | National Technical Systems NTS<br>www.nts.com                              | (815) 315-9250 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Romeoville     | Radiometrics Midwest Corp.<br>www.radiomet.com                             | (815) 293-0772 | •                  |                       | •         | •                     | •   | •                   | •                |             | •        | •                |                 | •           | •                   |                |                | •                   |                    | •           | •                       |         |
| Roselle        | Electri-Flex Company<br>www.electriflex.com                                | (800) 323-6174 |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             | •                       |         |
| Wheeling       | D.L.S. Electronic Systems, Inc.<br>www.dlsemc.com                          | (847) 537-6400 | •                  | •                     | •         | •                     | •   | •                   | •                |             | •        | •                |                 | •           | •                   | •              |                | •                   |                    | •           | •                       |         |
| INDIANA        |                                                                            |                |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Indianapolis   | Raytheon Technical Services Co., EMI Lab<br>www.raytheon.com               | (317) 306-4872 |                    |                       | •         |                       |     |                     |                  |             | •        |                  |                 | •           | •                   |                |                |                     |                    |             |                         | •       |
| Indianapolis   | F2 Labs, Inc.<br>http://f2labs.com                                         | (877) 405-1580 |                    |                       | •         | •                     | •   | •                   | •                | •           | •        | •                |                 |             | •                   | •              |                |                     |                    | •           |                         |         |

| US           | A continued                                                     |                | BELLCORDIA<br>BELLCORDIA | CB/CAB/TCB CB/CAB/TCB | EMISSIONS | EMP/LIGHTNING EFFECTS |     | EURO CERTIFICATIONS | PART 15 & 18 | FCC PART 68 | IMMUNITY | LIGHTNING STRIKE | MIL-STD 188/125 | MIL-STD 461 | NVLAP/A2LA APPROVED | PRODUCT SAFETY | RADHAZ TESTING | RS103 > 200 V/METER | REPAIR/CALIBRATION | RTCA D0-160 | SHIELDING EFFECTIVENESS | PEST |
|--------------|-----------------------------------------------------------------|----------------|--------------------------|-----------------------|-----------|-----------------------|-----|---------------------|--------------|-------------|----------|------------------|-----------------|-------------|---------------------|----------------|----------------|---------------------|--------------------|-------------|-------------------------|------|
| CITY/STATE   |                                                                 | PHONE #        | BELL                     | CB/                   | EMIS      | EMP                   | ESD | EUR                 | FCC          | FCC         | IMM      | LIGH             | -WIL-           | -TIW        | NVL                 | PRO            | RAD            | RSI                 | REPJ               | RTC         | SHIE                    | TEM  |
| KANSAS       |                                                                 |                |                          |                       |           |                       |     |                     |              |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |      |
| Louisburg    | Rogers Labs, Inc.<br>www.rogerslabs.com                         | (913) 837-3214 |                          |                       | •         |                       | •   |                     | •            |             | •        |                  |                 | •           | •                   |                |                |                     |                    | •           |                         |      |
| KENTUC       | KY                                                              |                |                          |                       |           |                       |     |                     |              |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |      |
| Lexington    | Lexmark International EMC Lab<br>www.lexmark.com                | (859) 232-2000 |                          |                       |           |                       |     |                     | •            |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |      |
| Lexington    | Intertek (Lexington)<br>www.intertek.com                        | (800) 976-5352 | •                        | •                     | •         | •                     | •   | •                   | •            |             | •        |                  |                 | •           | •                   |                |                |                     |                    |             |                         |      |
| MAINE        |                                                                 |                |                          |                       |           |                       |     |                     |              |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |      |
| Portland     | Enerdoor<br>www.enerdoor.com                                    | (207) 210-6511 |                          |                       | •         |                       | •   | •                   |              |             | •        |                  |                 |             |                     |                |                |                     |                    |             |                         |      |
| MARYLA       | ND                                                              |                |                          |                       |           |                       |     |                     |              |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |      |
| Baltimore    | MET Laboratories, Inc.<br>www.metlabs.com                       | (410) 354-3300 | •                        | •                     | •         | •                     | •   | •                   | •            | •           | •        | •                | •               | •           | •                   | •              |                | •                   |                    | •           | •                       |      |
| Columbia     | Advanced Programs Inc.<br>www.advprograms.com                   | (410) 312-5800 |                          |                       |           |                       |     |                     |              |             |          |                  |                 | •           |                     |                |                |                     |                    | •           |                         | •    |
| Damascus     | F2 Labs, Inc.<br>http://f2labs.com                              | (301) 253-4500 |                          |                       | •         | •                     | •   | •                   | •            | •           | •        | •                |                 |             | •                   | •              |                |                     |                    | •           |                         |      |
| Elkridge     | ATEC Industries, Ltd.<br>www.atecindustries.com                 | (443) 459-5080 |                          |                       |           | •                     | •   |                     |              |             |          | •                | •               | •           | •                   |                |                |                     |                    |             | •                       |      |
| Frederick    | The American Association for<br>Lab Accreditation; www.a2la.org | (301) 644-3248 |                          |                       |           |                       |     |                     |              |             |          |                  |                 |             | •                   |                |                |                     |                    |             |                         |      |
| Frederick    | Washington Labs<br>www.wll.com                                  | (301) 216-1500 |                          |                       |           |                       |     |                     | •            |             |          |                  |                 |             |                     | •              |                |                     |                    |             |                         |      |
| Gaithersburg | Washington Laboratories, Ltd.<br>www.wll.com                    | (301) 216-1500 |                          |                       | •         | •                     |     | •                   | •            |             | •        | •                | •               | •           | •                   | •              | •              | •                   |                    | •           | •                       |      |
| Rockville    | P.J. Mondin, P.E. Consultants                                   | (301) 460-5864 |                          |                       |           |                       |     |                     | •            |             |          |                  |                 | •           |                     |                |                |                     |                    |             | •                       | •    |
| MASSAC       | HUSETTS                                                         |                |                          |                       |           |                       |     |                     |              |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |      |
| Billerica    | Quest Engineering Solutions<br>www.qes.com                      | (978) 667-7000 |                          |                       |           |                       |     |                     |              |             |          |                  |                 |             |                     |                |                |                     |                    |             | •                       |      |
| Boxborough   | Intertek (Boxborough)<br>www.intertek.com                       | (800) 967-5352 |                          | •                     | •         | •                     | •   | •                   | •            | •           | •        |                  |                 | •           | •                   | •              |                | •                   |                    | •           | •                       |      |
| Boxborough   | National Technical Systems<br>www.nts.com                       | (978) 266-1001 | •                        | •                     | •         | •                     | •   | •                   | •            | •           | •        | •                | •               | •           | •                   |                |                | •                   |                    | •           | •                       |      |
| Burlington   | NELCO<br>www.nelcoworldwide.com                                 | (781) 933-1940 |                          |                       |           |                       |     |                     |              |             |          |                  |                 |             |                     |                |                |                     |                    |             | •                       |      |
| Littleton    | TÜV Rheinland of North America, Inc.<br>www.tuv.com             | (978) 266-9500 |                          | •                     | •         |                       | •   | •                   | •            |             | •        |                  |                 |             |                     | •              |                |                     |                    |             |                         |      |
| Littleton    | Compliance Management Group<br>www.cmgcorp.net                  | (978) 431-1985 | •                        |                       | •         |                       | •   | •                   | •            |             | •        |                  |                 |             | •                   | •              |                |                     |                    |             | •                       |      |
| Milford      | Test Site Services, Inc.<br>www.testsiteservices.com            | (508) 634-3444 | •                        | •                     | •         |                       | •   | •                   | •            | •           | •        | •                |                 | •           | •                   | •              |                | •                   |                    | •           | •                       |      |

| US            | Continued                                                                           |                | BELLCORE/TELCORDIA | CB/CAB/TCB CB/CAB/TCB | EMISSIONS | EMP/LIGHTNING EFFECTS |     | EURO CERTIFICATIONS | FCC PART 15 & 18 | FCC PART 68 | IMMUNITY | LIGHTNING STRIKE | MIL-STD 188/125 | MIL-STD 461 | NVLAP/A2LA APPROVED | PRODUCT SAFETY | RADHAZ TESTING | RS103 > 200 V/METER | REPAIR/CALIBRATION | RTCA D0-160 | SHIELDING EFFECTIVENESS | EST     |
|---------------|-------------------------------------------------------------------------------------|----------------|--------------------|-----------------------|-----------|-----------------------|-----|---------------------|------------------|-------------|----------|------------------|-----------------|-------------|---------------------|----------------|----------------|---------------------|--------------------|-------------|-------------------------|---------|
| CITY/STATE    | COMPANY NAME / WEBSITE                                                              | PHONE #        | BELLC              | CB/CI                 | EMISS     | EMP/                  | ESD | EURO                | FCC P            | FCC P       | IMMU     | LIGHT            | WIL-S           | WIL-S       | NVLA                | PROD           | RADH           | <b>RS10</b>         | REPAI              | RTCA        | SHIEL                   | TEMPEST |
| Newton        | EMC Test Design, LLC<br>www.emctd.com                                               | (508) 292-1833 |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                | •              |                     |                    |             |                         |         |
| Peabody       | TÜV SUD America Inc.<br>www.tuv-sud-america.com/us-en                               | (978) 573-2500 | •                  | •                     | •         | •                     | •   | •                   | •                |             | •        | •                |                 | •           | •                   | •              |                | •                   |                    | •           | •                       |         |
| Pittsfield    | National Technical Systems<br>www.nts.com                                           | (413) 499-2135 |                    | •                     | •         | •                     | •   | •                   | •                |             | •        | •                |                 |             | •                   |                |                |                     |                    | •           |                         |         |
| Woburn        | Chomerics, Div. of Parker Hannifin Corp.<br>www.chomerics.com                       | (781) 935-4850 |                    |                       | •         | •                     | •   | •                   | •                |             | •        | •                | •               | •           | •                   | •              | •              | •                   |                    | •           | •                       |         |
| MICHIGAN      | N                                                                                   |                |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Brighton      | Willow Run Test Labs, LLC<br>www.wrtest.com                                         | (734) 252-9785 |                    |                       | •         |                       | •   |                     | •                |             |          |                  |                 |             |                     |                |                |                     |                    |             | •                       |         |
| Burton        | Trialon Corporation (Now Element)<br>element.com/landing/CTM-trialon-is-now-element | (810) 742-8500 |                    |                       | •         |                       | •   |                     |                  |             | •        |                  |                 |             | •                   |                |                |                     |                    |             |                         |         |
| Detroit       | National Technical Systems<br>www.nts.com                                           | (313) 835-0044 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 |             | •                   |                |                | •                   |                    |             |                         |         |
| Detroit       | TÜV Rheinland of North America, Inc.<br>www.tuv.com/en/middleeast/home.jsp          | (734) 207-9852 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 |             |                     | •              |                |                     |                    |             |                         |         |
| Grand Rapids  | Intertek (Grand Rapids)<br>www.intertek.com                                         | (800) 967-5352 |                    | •                     | •         | •                     | •   | •                   | •                |             | •        | •                |                 |             | •                   | •              |                | •                   |                    | •           |                         |         |
| Holland       | TÜV SÜD America, Inc.<br>www.tuv-sud-america.com/us-en                              | (616) 546-3902 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 |             |                     |                |                |                     | •                  |             |                         |         |
| Novi          | Underwriters Laboratories, Inc.<br>www.ul.com                                       | (248) 427-5300 |                    |                       | •         |                       | •   | •                   |                  |             | •        |                  |                 | •           | •                   | •              |                |                     |                    | •           | •                       |         |
| Plymouth      | Intertek (Plymouth)<br>www.intertek.com                                             | (800) 967-5352 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Plymouth      | TÜV SÜD America, Inc.<br>www.tuvamerica.com                                         | (734) 455-4841 | •                  | •                     | •         | •                     | •   | •                   | •                |             | •        | •                |                 | •           | •                   | •              |                | •                   |                    |             | •                       |         |
| Sister Lakes  | AHD EMC Lab<br>www.ahde.com                                                         | (269) 313-2433 |                    |                       | •         |                       | •   | •                   | •                |             | •        |                  |                 | •           | •                   |                |                |                     |                    |             | •                       |         |
| MINNESO       | TA                                                                                  | ·              |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Brooklyn Park | Element<br>www.element.com                                                          | (612) 638-5136 |                    | •                     | •         |                       | •   |                     | •                |             | •        |                  |                 |             | •                   |                |                |                     |                    |             |                         |         |
| Glencoe       | International Certification Services, Inc.<br>www.icsi-us.com                       | (320) 864-4444 | •                  |                       | •         |                       | •   | •                   | •                |             | •        |                  |                 | •           | •                   | •              |                |                     |                    | •           | •                       |         |
| Minneapolis   | Element<br>www.element.com                                                          | (952) 888-7795 |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             | •                   |                |                |                     |                    |             |                         |         |
| MISSOURI      |                                                                                     | 1              |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| St. Louis     | Boeing-St. Louis EMC Lab<br>www.boeing.com                                          | (314) 232-0232 |                    |                       |           |                       |     |                     |                  |             |          |                  |                 | •           | •                   |                |                | •                   |                    |             | •                       |         |
| NEBRASK       | -                                                                                   |                |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Lincoln       | NCEE Labs<br>www.nceelabs.com                                                       | (402) 323-6233 |                    |                       | •         |                       | •   | •                   | •                |             | •        |                  |                 | •           | •                   | •              |                |                     |                    | •           |                         |         |
| NEW HAM       | NEW HAMPSHIRE                                                                       |                |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Goffstown     | Retlif Testing Laboratories<br>www.retlif.com                                       | (603) 497-4600 |                    | •                     | •         | •                     | •   | •                   | •                | •           | •        | •                |                 | •           | •                   | •              | •              | •                   |                    | •           | •                       |         |

| US            | continued                                                           |                            | BELLCORE/TELCORDIA | CB/CAB/TCB CB/CAB/TCB | EMISSIONS | EMP/LIGHTNING EFFECTS |     | EURO CERTIFICATIONS | FCC PART 15 & 18 | FCC PART 68 | IMMUNITY | LIGHTNING STRIKE | MIL-STD 188/125 | MIL-STD 461 | NVLAP/A2LA APPROVED | PRODUCT SAFETY | RADHAZ TESTING | RS103 > 200 V/METER | REPAIR/CALIBRATION | RTCA D0-160 | SHIELDING EFFECTIVENESS | TEMPEST |
|---------------|---------------------------------------------------------------------|----------------------------|--------------------|-----------------------|-----------|-----------------------|-----|---------------------|------------------|-------------|----------|------------------|-----------------|-------------|---------------------|----------------|----------------|---------------------|--------------------|-------------|-------------------------|---------|
| CITY/STATE    | COMPANY NAME / WEBSITE                                              | PHONE #                    | BELL               | CB/(                  | EMIS      | EMP                   | ESD | EUR                 | FCC              | FCC         | WWI      | LIGH             | WIL-            | WIF         | NVL/                | PRO            | RADI           | RS1(                | REPA               | RTC/        | SHIE                    | TEM     |
| Hudson        | Core Compliance Testing Services<br>www.corecompliancetesting.com   | (603) 889-5545             |                    |                       | •         |                       | •   |                     | •                |             | •        | •                |                 |             | •                   |                |                |                     |                    |             |                         |         |
| Sandown       | Compliance Worldwide, Inc.<br>www.cw-inc.com                        | (603) 887-3903             |                    |                       | •         |                       | •   |                     | •                | •           | •        | •                |                 |             | •                   |                |                |                     |                    |             |                         |         |
| NEW JER       | SEY                                                                 |                            |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Annandale     | NU Laboratories, Inc.<br>www.nulabs.com                             | (908) 713-9300             |                    |                       |           |                       | •   |                     |                  |             |          |                  |                 | •           | •                   |                |                |                     |                    |             | •                       |         |
| Bridgewater   | Lichtig EMC Consulting<br>www.lichtigemc.com                        | (908) 541-0213             | •                  |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Camden        | L-3 Communication Systems-East<br>www.l3harris.com/                 | (856) 338-3000             |                    |                       |           |                       |     |                     | Cont             | act         | ab f     | or te            | sting           | cap         | abili               | ties.          |                |                     |                    |             |                         |         |
| Clifton       | NJ-MET<br>www.njmetmtl.com                                          | (973) 546-5393             | •                  |                       |           |                       |     |                     |                  | •           |          |                  |                 |             |                     |                |                |                     |                    |             |                         | •       |
| Edison        | Metex Corporation<br>www.metexcorp.com                              | (732) 287-0800             |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             | •                       |         |
| Edison        | TESEQ, Inc.<br>www.teseq.com                                        | (732) 417-0501             |                    |                       |           | •                     |     |                     |                  | •           |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Fairfield     | Intertek (Fairfield)<br>www.intertek.com                            | (800) 967-5352             |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Fairfield     | SGS U.S. Testing Co., Inc.<br>www.sgsgroup.us.com                   | (973) 575-5252             | •                  |                       | •         |                       |     | •                   |                  |             |          |                  |                 |             | •                   | •              |                |                     |                    |             |                         |         |
| Farmingdale   | EMC Technologists A Div. of I2R Corp.<br>www.emctech.com            | (732) 919-1100             | •                  |                       | •         |                       | •   | •                   | •                | •           | •        |                  |                 | •           |                     |                |                |                     |                    |             |                         |         |
| Hillsborough  | Advanced Compliance Laboratory, Inc.<br>http://ac-lab.com           | (908) 927-9288<br>ext. 106 |                    |                       | •         |                       |     | •                   | •                | •           | •        |                  |                 |             | •                   | •              |                |                     |                    |             |                         |         |
| Rutherford    | SGS International Certification Services, Inc.; www.sgsgroup.us.com | (201) 508-3000             |                    |                       |           |                       |     | •                   |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Thorofare     | NDI Engineering Company<br>www.ndieng.com                           | (856) 848-0033             |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             | •                       |         |
| Tinton Falls  | National Technical Systems (NTS)<br>www.nts.com                     | (732) 936-0800             | •                  | •                     | •         | •                     | •   | •                   | •                | •           | •        | •                | •               | •           | •                   | •              |                | •                   |                    | •           | •                       | •       |
| NEW MEX       | (ICO                                                                |                            |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Albuquerque   | Advanced Testing Services, Inc.<br>www.advanced-testing.com         | (505) 292-2032             |                    |                       |           |                       |     |                     |                  |             |          |                  | •               |             |                     |                | •              |                     |                    |             | •                       |         |
| White Sands   | USA WSMR, Survivability Directorate<br>www.wsmr.army.mil            | (575) 678-1621             |                    |                       | •         | •                     | •   |                     |                  |             | •        | •                |                 | •           |                     |                | •              | •                   |                    |             | •                       |         |
|               | RK                                                                  |                            |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| College Point | Aero Nav Laboratories, Inc.<br>www.aeronavlabs.com                  | (718) 939-4422             | •                  |                       |           | •                     |     |                     | •                |             | •        | •                |                 | •           | •                   |                |                | •                   |                    | •           | •                       | •       |
| Deer Park     | Universal Shielding Corp.<br>www.universalshielding.com             | (631) 392-4888             |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             | •                       |         |
| Endicott      | BAE Systems Controls, Inc.<br>www.baesystems.com                    | (607) 770-2000             |                    |                       | •         | •                     |     |                     |                  |             |          | •                |                 | •           | •                   |                |                | •                   |                    | •           |                         |         |
| Medford       | American Environments Co.<br>www.aeco.com                           | (631) 736-5883             | •                  |                       | •         | •                     | •   | •                   | •                |             | •        | •                |                 | •           |                     | •              |                |                     |                    | •           | •                       |         |
| Melville      | Underwriters Laboratories, LLC.<br>www.ul.com                       | (631) 271-6200             | •                  | •                     | •         |                       | •   | •                   | •                | •           | •        |                  |                 |             | •                   | •              |                |                     |                    |             | •                       |         |

| US                | Continued                                                                     |                | BELLCORE/TELCORDIA | CB/CAB/TCB CB/CAB/TCB | EMISSIONS | EMP/LIGHTNING EFFECTS |     | EURO CERTIFICATIONS | FCC PART 15 & 18 | FCC PART 68 | IMMUNITY | LIGHTNING STRIKE | MIL-STD 188/125 | MIL-STD 461 | NVLAP/A2LA APPROVED | PRODUCT SAFETY | RADHAZ TESTING | RS103 > 200 V/METER | REPAIR/CALIBRATION | RTCA D0-160 | SHIELDING EFFECTIVENESS | TEMPEST |
|-------------------|-------------------------------------------------------------------------------|----------------|--------------------|-----------------------|-----------|-----------------------|-----|---------------------|------------------|-------------|----------|------------------|-----------------|-------------|---------------------|----------------|----------------|---------------------|--------------------|-------------|-------------------------|---------|
| CITY/STATE        | COMPANY NAME / WEBSITE                                                        | PHONE #        | BELL               | CB/(                  | EMIS      | EMP,                  | ESD | EUR(                | FCC              | FCC         | IMMI     | LIGH             | WIL-9           | WIL-9       | NVLA                | PROI           | RADI           | RS10                | REPA               | RTCA        | SHIE                    | TEMF    |
| Poughkeepsie      | IBM Corp. Poughkeepsie EMC Lab<br>www.ibm.com                                 | (845) 433-1234 |                    | •                     |           |                       |     |                     | •                |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Webster           | TÜV Rheinland Of North America<br>www.tuv.com                                 | (585) 645-0125 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 |             | •                   | •              | •              |                     |                    |             |                         |         |
| Ronkonkoma        | Retlif Testing Laboratories<br>www.retlif.com                                 | (631) 737-1500 |                    | •                     | •         | •                     | •   | •                   | •                | •           | •        | •                |                 | •           | •                   | •              | •              | •                   |                    | •           | •                       |         |
| NORTH C           | AROLINA                                                                       |                |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Cary              | CertifiGroup<br>www.certifigroup.com                                          | (919) 466-9283 |                    | •                     |           |                       |     | •                   |                  |             |          |                  |                 |             | •                   | •              |                |                     |                    |             |                         |         |
| Cary              | MET Laboratories, Inc.<br>www.metlabs.com                                     | (919) 481-9319 | •                  | •                     | •         |                       | •   | •                   | •                | •           | •        | •                |                 | •           | •                   | •              |                | •                   |                    | •           | •                       |         |
| Greensboro        | Schneider Electric Industrial Repair Services www.schneiderelectricrepair.com | (800) 950-9550 |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     | •                  |             |                         |         |
| Greenville        | Lawrence Behr Associates (LBA)<br>www.lbagroup.com                            | (252) 757-0279 |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                | •              |                     |                    |             | •                       |         |
| Res. Triangle Pk. | Educated Design & Dev., Inc. (ED&D)<br>www.productsafet.com                   | (919) 469-9434 |                    | •                     |           |                       |     |                     |                  |             |          |                  |                 |             | •                   | •              |                |                     | •                  |             |                         | •       |
| Res. Triangle Pk. | IBM RTP EMC Test Labs<br>www.ibm.com                                          | (800) 426-4968 |                    |                       | •         |                       |     |                     | •                |             | •        |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Res. Triangle Pk. | Underwriters Laboratories, LLC.<br>www.ul.com                                 | (919) 549-1400 | •                  | •                     | •         |                       | •   | •                   | •                | •           | •        |                  |                 |             | •                   | •              |                |                     |                    |             | •                       |         |
| оню               |                                                                               |                |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Cleveland         | CSA International<br>www.csagroup.org                                         | (216) 524-4990 |                    |                       |           |                       |     | •                   |                  |             |          |                  |                 |             |                     | •              |                |                     |                    |             |                         |         |
| Cleveland         | NASA GRC EMI Lab<br>www1.grc.nasa.gov                                         | (216) 433-4000 |                    |                       |           |                       |     |                     |                  |             |          |                  |                 | •           |                     |                |                |                     |                    |             | •                       |         |
| Colombus          | Intertek (Colombus)<br>www.intertek.com                                       | (800) 967 5352 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Mason             | L-3 Cincinnati Electronics<br>www.cinele.com                                  | (513) 573-6100 |                    |                       | •         |                       | •   |                     |                  |             | •        |                  |                 | •           |                     |                |                | •                   |                    | •           |                         |         |
| Middlefield       | F2 Labs, Inc.<br>http://f2labs.com                                            | (440) 632-5541 |                    | •                     | •         | •                     | •   | •                   | •                | •           | •        | •                |                 |             | •                   | •              |                |                     |                    |             | •                       |         |
| Springboro        | Pioneer Automotive Technologies                                               | (937) 746-6600 |                    |                       | •         |                       | •   |                     | •                |             | •        |                  |                 | •           | •                   |                |                |                     |                    |             |                         |         |
| OREGON            |                                                                               |                |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Beaverton         | Tektronix<br>www.tek.com                                                      | (503) 627-4133 | •                  |                       |           |                       |     |                     |                  |             |          |                  |                 |             | •                   |                |                |                     |                    | •           |                         |         |
| Fairview          | Intertek (Fairview)<br>www.intertek.com                                       | (800) 967-5352 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Hillsboro         | Element<br>www.element.com                                                    | (503) 648-1818 | •                  |                       |           |                       |     |                     |                  |             |          |                  |                 |             | •                   |                |                |                     |                    | •           |                         |         |
| Hillsboro         | ElectroMagnetic Investigations, LLC<br>https://emicomply.com/contact/         | (503) 466-1160 |                    |                       | •         |                       | •   | •                   | •                |             | •        |                  |                 | •           | •                   |                |                |                     |                    |             | •                       |         |
| Hillsboro         | Element<br>www.element.com                                                    | (503) 844-4066 |                    | •                     | •         |                       | •   |                     | •                |             | •        |                  |                 |             | •                   |                |                |                     |                    | •           | •                       |         |
| Portland          | TÜV SÜD America, Inc.<br>www.tuv-sud-america.com/us-en                        | (503) 598-7580 |                    | •                     | •         | •                     | •   | •                   | •                |             | •        |                  |                 |             |                     | •              |                |                     |                    |             |                         |         |

| US                   | Continued                                                |                | BELLCORE/TELCORDIA | CB/CAB/TCB CB/CAB/TCB | EMISSIONS | emp/lightning effects |     | EURO CERTIFICATIONS | FCC PART 15 & 18 | FCC PART 68 | IMMUNITY | LIGHTNING STRIKE | MIL-STD 188/125 | MIL-STD 461 | NVLAP/A2LA APPROVED | PRODUCT SAFETY | RADHAZ TESTING | RS103 > 200 V/METER | REPAIR/CALIBRATION | RTCA D0-160 | SHIELDING EFFECTIVENESS | FST  |
|----------------------|----------------------------------------------------------|----------------|--------------------|-----------------------|-----------|-----------------------|-----|---------------------|------------------|-------------|----------|------------------|-----------------|-------------|---------------------|----------------|----------------|---------------------|--------------------|-------------|-------------------------|------|
| CITY/STATE           | COMPANY NAME / WEBSITE                                   | PHONE #        | BELLO              | CB/C                  | EMIS      | EMP/                  | ESD | EURO                | FCC F            | FCC F       | IMML     | LIGHT            | WIL-S           | WIL-S       | NVLA                | PROD           | RADH           | <b>R</b> S10        | REPA               | RTCA        | SHIEL                   | TEMP |
| PENNSYL              | VANIA                                                    |                |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |      |
| Chambersburg         | Cuming Lehman Chambers<br>http://cuminglehman.com        | (717) 263-4101 |                    |                       | •         |                       |     |                     |                  |             | •        |                  |                 | •           |                     |                |                |                     |                    | •           |                         |      |
| Glenside             | Electro-Tech Systems, Inc.<br>www.electrotechsystems.com | (215) 887-2196 | •                  |                       |           |                       | •   |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             | •                       |      |
| Harleysville         | Retlif Testing Laboratories<br>www.retlif.com            | (215) 256-4133 |                    | •                     | •         | •                     | •   | •                   | •                | •           | •        | •                |                 | •           | •                   | •              | •              | •                   |                    | •           | •                       |      |
| Hatfield             | Laboratory Testing Inc.<br>www.labtesting.com            | (800) 219-9095 |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             | •                   |                |                |                     | •                  |             |                         |      |
| New Castle           | Keystone Compliance LLC<br>www.keystonecompliance.com    | (724) 657-9940 | •                  |                       | •         | •                     | •   | •                   | •                |             | •        | •                | •               | •           | •                   | •              | •              | •                   |                    | •           | •                       |      |
| Pottstown            | BEC Inc.<br>www.bec-ccl.com                              | (610) 970-6880 |                    |                       | •         |                       | •   |                     | •                |             | •        |                  |                 |             | •                   |                |                |                     |                    |             | •                       |      |
| State College        | Videon Central, Inc.<br>www.videon-central.com           | (814) 235-1111 |                    |                       | •         |                       | •   | •                   | •                |             |          |                  |                 |             |                     |                |                |                     |                    | •           |                         |      |
| West<br>Conshohocken | R&B Laboratory<br>www.rblaboratory.com                   | (610) 825-1960 |                    |                       | •         | •                     | •   |                     |                  |             | •        | •                |                 | •           |                     |                | •              | •                   |                    | •           | •                       |      |
| TENNESS              | EE                                                       |                |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |      |
| Knoxville            | Global Testing Labs LLC<br>www.globaltestinglabs.com     | (865) 523-9972 |                    |                       | •         |                       |     |                     | •                |             | •        |                  |                 |             | •                   |                |                |                     |                    |             |                         |      |
| Knoxville            | AMS Corporation<br>www.ams-corp.com                      | (865) 691-1756 |                    |                       | •         |                       | •   |                     |                  |             | •        |                  |                 | •           |                     |                |                |                     |                    |             |                         |      |
| TEXAS                |                                                          |                |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |      |
| Austin               | BAE Systems IDS Test Services<br>www.baesystems.com      | (512) 926-2800 |                    |                       |           |                       |     |                     |                  |             |          |                  | •               |             |                     |                |                | •                   |                    |             |                         |      |
| Austin               | MET Laboratories, Inc.<br>www.metlabs.com                | (512) 287-2500 | •                  | •                     | •         | •                     | •   | •                   | •                | •           | •        | •                | •               | •           | •                   | •              |                | •                   |                    | •           | •                       |      |
| Bartonville          | Nemko USA<br>www.nemko.com                               | (940) 294-7057 |                    | •                     | •         |                       | •   | •                   | •                | •           | •        |                  |                 | •           | •                   | •              | •              | •                   |                    | •           | •                       |      |
| Cedar Park           | TDK RF Solutions, Inc.<br>www.tdkrfsolutions.tdk.com     | (512) 258-9478 |                    |                       | •         |                       | •   | •                   | •                | •           | •        |                  |                 |             | •                   |                |                |                     |                    |             |                         |      |
| Elmendorf            | Intertek (Elmendorf)<br>www.intertek.com                 | (800) 967-5352 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 |             |                     |                |                |                     |                    |             |                         |      |
| Plano                | National Technical Systems<br>www.nts.com                | (972) 509-2566 | •                  | •                     | •         | •                     | •   | •                   | •                | •           | •        | •                |                 | •           | •                   |                |                | •                   |                    | •           | •                       |      |
| Plano                | Element<br>www.element.com                               | (469) 304-5255 |                    | •                     | •         |                       | •   |                     | •                |             | •        |                  |                 |             | •                   |                |                |                     |                    |             |                         |      |
| Plano                | Intertek (Plano)<br>www.intertek.com                     | (800) 967-5352 |                    | •                     | •         | •                     | •   | •                   | •                |             | •        |                  |                 |             | •                   | •              |                |                     |                    |             |                         |      |
| Round Rock           | Professional Testing (EMI), Inc.<br>www.ptitest.com      | (512) 244-3371 |                    |                       | •         |                       | •   |                     | •                |             | •        | •                |                 | •           | •                   | •              |                |                     | •                  | •           | •                       |      |
| San Antonio          | Southwest Research Institute<br>www.swri.org             | (210) 684-5111 | •                  |                       | •         | •                     | •   | •                   | •                | •           | •        | •                | •               | •           | •                   | •              |                | •                   |                    | •           | •                       |      |
| UTAH                 |                                                          |                |                    | -                     |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    | -           |                         |      |
| Coalville            | DNB Engineering, Inc.<br>www.dnbenginc.com               | (435) 336-4433 | •                  |                       | •         |                       | •   | •                   | •                | •           | •        |                  |                 |             |                     | •              |                |                     |                    |             |                         |      |
|                      | """".unbonyme.com                                        |                |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |      |

ITEM

| US             | Continued                                                  |                | BELLCORE/TELCORDIA | CB/CAB/TCB CB/CAB/TCB | EMISSIONS | emp/lightning effects |     | EURO CERTIFICATIONS | FCC PART 15 & 18 | FCC PART 68 | IMMUNITY | LIGHTNING STRIKE | MIL-STD 188/125 | MIL-STD 461 | NVLAP/A2LA APPROVED | PRODUCT SAFETY | RADHAZ TESTING | RS103 > 200 V/METER | REPAIR/CALIBRATION | RTCA D0-160 | SHIELDING EFFECTIVENESS | EST     |
|----------------|------------------------------------------------------------|----------------|--------------------|-----------------------|-----------|-----------------------|-----|---------------------|------------------|-------------|----------|------------------|-----------------|-------------|---------------------|----------------|----------------|---------------------|--------------------|-------------|-------------------------|---------|
| CITY/STATE     | COMPANY NAME / WEBSITE                                     | PHONE #        | BELLO              | CB/C                  | EMIS      | EMP/                  | ESD | EURO                | FCC P            | FCC P       | IMMI     | LIGH             | WIL-S           | WIL-S       | NVLA                | PROD           | RADH           | RS10                | REPA               | RTCA        | SHIEL                   | TEMPEST |
| Draper         | VPI Technology<br>www.vpitechnology.com                    | (801) 495-2310 |                    |                       | •         |                       | •   | •                   | •                | •           | •        |                  |                 | •           | •                   | •              |                |                     |                    |             |                         |         |
| Ogden          | Little Mountain Test Facility (LMTF)                       | (801) 315-2320 |                    |                       | •         | •                     | •   |                     |                  |             | •        |                  | •               | •           |                     |                |                | •                   |                    | •           | •                       |         |
| Salt Lake City | L3 Communication Systems-West<br>www.l3harris.com          | (801) 594-2000 |                    |                       | •         |                       |     | •                   | •                |             |          |                  |                 | •           |                     |                |                |                     |                    | •           |                         |         |
| VERMON         | Т                                                          |                |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Middlebury     | Green Mountain Electromagnetics, Inc.<br>www.gmelectro.com | (802) 388-3390 |                    |                       |           |                       |     | •                   | •                | •           |          |                  | •               | •           |                     |                |                |                     |                    |             |                         |         |
| VIRGINIA       |                                                            |                |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Fredericksburg | E-LABS INC.<br>www.e-labsinc.com                           | (540) 834-0372 |                    |                       | •         |                       | •   |                     |                  |             | •        |                  |                 | •           | •                   |                | •              |                     |                    | •           | •                       |         |
| Fredericksburg | Vitatech Engineering, LLC<br>http://vitatech.net           | (540) 286-1984 | •                  |                       | •         |                       |     |                     | •                | •           | •        |                  | •               | •           |                     |                |                |                     |                    |             | •                       |         |
| Herndon        | Rhein Tech Laboratories, Inc.<br>www.rheintech.com         | (703) 689-0368 |                    |                       | •         |                       | •   | •                   | •                |             | •        |                  |                 | •           | •                   | •              |                |                     |                    | •           | •                       |         |
| Reston         | TEMPEST, Inc. (VA)<br>www.tempest-inc.com                  | (703) 836-7378 |                    |                       | •         |                       | •   | •                   | •                | •           | •        |                  | •               | •           |                     |                |                |                     |                    |             | •                       | •       |
| Richmond       | Technology International, Inc.<br>www.techintl.com         | (804) 794-4144 |                    | •                     | •         |                       | •   | •                   |                  |             | •        |                  |                 |             |                     | •              |                |                     |                    |             |                         | •       |
| WASHING        | STON                                                       |                |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Bothell        | CKC Laboratories, Inc<br>www.ckc.com                       | (425) 402-1717 |                    | •                     | •         | •                     | •   | •                   | •                |             | •        | •                | •               | •           | •                   |                |                | •                   |                    | •           | •                       |         |
| Bothell        | Element<br>www.element.com                                 | (425) 984-6600 |                    |                       | •         |                       | •   |                     | •                |             | •        |                  |                 |             | •                   | •              |                |                     |                    |             |                         |         |
| WISCONS        | SIN                                                        |                |                    |                       |           |                       |     |                     |                  |             |          |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Genoa City     | D.L.S. Electronic Systems, Inc.<br>www.dlsemc.com          | (262) 279-0210 |                    | •                     | •         |                       |     |                     | •                |             |          |                  |                 |             | •                   |                |                |                     |                    |             |                         |         |
| Middleton      | Intertek<br>www.intertek.com                               | (800) 967-5352 |                    | •                     | •         |                       | •   | •                   | •                |             | •        |                  |                 |             |                     |                |                |                     |                    |             |                         |         |
| Neenah         | International Compliance Laboratories<br>www.icl-us.com    | (920) 720-5555 |                    |                       | •         |                       | •   |                     | •                |             | •        |                  |                 |             | •                   |                |                |                     |                    |             |                         |         |

### **EMC/EMI CONSULTANTS DIRECTORY**

#### WYATT TECHNICAL SERVICES LLC

Consultancy Services: EMC Consultation, EMC Design Reviews, Pre-Compliance Testing, Training Services Kenneth Wyatt, Principal Consultant Phone: (719) 310-5418 www.emc-seminars.com

#### MIKE VIOLETTE, P.E., CEO

Consultancy Services: Radio Testing, Global Regulatory Standards Mike Violette Phone: (240) 401-1388 Email: mikev@wll.com www.wll.com

#### DAVID A. WESTON/EMC ENGINEER

Consultancy Services: EMC Analysis, Circuit and Equipment Design for EMC, EMI Problem Solving, R&D David A. Weston Phone: (613) 269-4247 Email: emccons0@gmail.com www.emcconsultinginc.com

#### GHERY S. PETTIT/PRESIDENT, PETTIT EMC CONSULTING LLC

Consultancy Services: EMC Standards, Product and Laboratory Design, and Troubleshooting Specializing in ITE Related EMC. Ghery S. Pettit Phone: (360) 790-9672 Email: Ghery@PettitEMCConsulting.com www.PettitEMCConsulting.com

#### PATRICK G. ANDRÉ/CONSULTANT, ANDRÉ CONSULTING, INC.

Consultancy Services: Troubleshooting, Design, Training and Test Support Patrick G. André Phone: (206) 406-8371 Email: pat@andreconsulting.com https://andreconsulting.com



ITEM

### 2024 CONSOLIDATED STANDARDS

**MANY IEC STANDARDS** have been adopted by the European Union with and EN designation replacing the IEC while maintaining the same number. In several cases the standard may have been modified. When using an IEC standard, one should check for IEC – EN differences and in both cases check for the current edition.

The standards list adds a category column to help assign the identified standard to a particular type or discipline. Most are self-explanatory, but to avoid confusion the category assignments follow. Often a particular standard could fit in more than one category, so the assignment is simply a judgement call.

- Apparatus this category is used to group standards for a product or device where it fails to fit in a specific group. For example, a medical device could be a product but it fits into the medical category more closely.
- · Auto/Vehicle standard primarily deals with automotive but includes ship or rail.
- General primarily deals with definitive or general EM control information.
- Generic deals with product standards not assigned to a particular group.
- · Medical medical equipment or methods
- MIL/Aero MIL-STD, Space, Aeronautical equipment, or methods includes associated design guides.
- Test primarily deals with test methods
- Wireless primarily deals with intentional RF emitters or receivers.

Useful websites associated with standards include but not limited to:

| ANSI        | http://webstore.ansi.org; www.ansi.org; www.c63.org                                                             |
|-------------|-----------------------------------------------------------------------------------------------------------------|
| APLAC       | Asia Pacific Laboratory Accreditation Cooperation (APLAC) https://www.apac-accreditation.org/                   |
| BSMI        | https://www.bsmi.gov.tw/wSite/mp?mp=1                                                                           |
| CSA         | http://www.cnca.gov.cn/                                                                                         |
| EN          | https://www.en-standard.eu/                                                                                     |
| FCC         | Federal Communications Commission (FCC) www.fcc.gov; Electronic Code of Fderal Regulations https://www.ecfr.gov |
| FDA         | FDA Center for Devices & Radiological Health (CDRH) https://www.fda.gov/MedicalDevices/default.htm              |
| Ford        | https://www.fordemc.com                                                                                         |
| GM          | https://global.ihs.com                                                                                          |
| IC          | Industry Canada (Certifications and Standards) http://www.ic.gc.ca/eic/site/smt-gst.nsf/eng/h_sf06165.html      |
| IEC / CISPR | https://webstore.iec.ch                                                                                         |
| IEEE        | IEEE Standards Association https://standards.ieee.org/                                                          |
| IEEE EMC    | IEEE EMC Society Standards Development Committee (SDCOM) https://standards.ieee.org/develop/index.<br>html      |
| ISED        | Innovation, Science and Economic Development Canada; https://www.ic.gc.ca/eic/site/icgc.nsf/eng/home            |
| ISO         | ISO (International Organization for Standards) http://www.iso.org/iso/home.html                                 |
| MIL-STD     | https://quicksearch.dla.mil/qsSearch.aspx                                                                       |
| RTCA        | https://www.rtca.org                                                                                            |
| Russia      | Gosstandart (Russia) https://gosstandart.gov.by/en                                                              |
| SAE         | SAE EMC Standards Committee www.sae.org                                                                         |
| VCCI        | VCCI (Japan, Voluntary Control Council for Interference) http://www.vcci.jp/vcci_e/                             |

| ~            |
|--------------|
| ာ            |
| 0            |
| ž            |
| <u> </u>     |
| Š            |
| 0            |
| Ē            |
|              |
| 0            |
| ⊳            |
|              |
| Ш            |
|              |
| $\mathbf{U}$ |
| S            |
| -            |
| Ū            |
| Š            |
| -01          |
|              |
|              |

| Category  | Publisher | Number     | Title                                                                                                                                                                                                                                                                                                                              |
|-----------|-----------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Apparatus | IEC       | 60118-13   | Electroacoustics - Hearing aids - Part 13: Electromagnetic compatibility (EMC)                                                                                                                                                                                                                                                     |
| Apparatus | IEC       | 60255-26   | Measuring relays and protection equipment - Part 26: Electromagnetic compatibility requirements                                                                                                                                                                                                                                    |
| Apparatus | IEC       | 60364-4-44 | Low-voltage electrical installations - Part 4-44: Protection for safety -<br>Protection against voltage disturbances and electromagnetic disturbance                                                                                                                                                                               |
| Apparatus | IEC       | 60728-12   | Cabled distribution systems for television and sound signals - Part 12:<br>Electromagnetic compatibility of systems IEC (continued)                                                                                                                                                                                                |
| Apparatus | IEC       | 60728-2    | Cabled distribution systems for television and sound signals - Part 2: Electromagnetic compatibility for equipment                                                                                                                                                                                                                 |
| Apparatus | IEC       | 60870-2-1  | Telecontrol equipment and systems - Part 2: Operating conditions - Section 1:<br>Power supply and electromagnetic compatibility                                                                                                                                                                                                    |
| Apparatus | IEC       | 60974-10   | Arc welding equipment - Part 10: Electromagnetic compatibility (EMC) requirements                                                                                                                                                                                                                                                  |
| Apparatus | IEC       | 61000-3-11 | Electromagnetic compatibility (EMC) - Part 3-11: Limits - Limitation of voltage changes, voltage fluctuations and flicker in public low voltage supply systems - Equipment with rated current <= 75 A and subject to conditional connection IEC (continued)                                                                        |
| Apparatus | IEC       | 61000-3-12 | Electromagnetic compatibility (EMC) - Part 3-12: Limits - Limits for harmonic currents produced by equipment connected to public low-voltage systems with input current >16 A and <=75 A per phase                                                                                                                                 |
| Apparatus | IEC       | 61000-3-2  | Electromagnetic compatibility (EMC)–Part 3-2: Limits - Limits for harmonic current emissions (equipment input current ≤ 16 A per phase)                                                                                                                                                                                            |
| Apparatus | IEC       | 61000-3-3  | Electromagnetic compatibility (EMC)–Part 3-3: Limits – Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current $\leq$ 16 A per phase and not subject to conditional connection                                                                      |
| Apparatus | IEC       | 61000-3-8  | Electromagnetic compatibility (EMC) - Part 3: Limits - Section 8: Signaling<br>on low-voltage electrical installations - Emission levels, frequency bands and<br>electromagnetic disturbance levels                                                                                                                                |
| Apparatus | IEC       | 61326-1    | Electrical equipment for measurement, control and laboratory use – EMC requirements – Part 1: General requirements                                                                                                                                                                                                                 |
| Apparatus | IEC       | 61326-2-1  | Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 2-1: Particular requirements - Test configurations, operational conditions and performance criteria for sensitive test and measurement equipment for EMC unprotected applications                                                       |
| Apparatus | IEC       | 61326-2-2  | Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 2-2: Particular requirements - Test configurations, operational conditions and performance criteria for portable test, measuring and monitoring equipment used in low-voltage distribution systems                                      |
| Apparatus | IEC       | 61326-2-3  | Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 2-3: Particular requirements - Test configuration, operational conditions and performance criteria for transducers with integrated or remote signal conditioning                                                                        |
| Apparatus | IEC       | 61326-2-4  | Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 2-4: Particular requirements - Test configurations, operational conditions and performance criteria for insulation monitoring devices according to IEC 61557-8 and for equipment for insulation fault location according to IEC 61557-9 |
| Apparatus | IEC       | 61326-2-5  | Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 2-5: Particular requirements - Test configurations, operational conditions and performance criteria for field devices with field bus interfaces according to IEC 61784-1                                                                |

| Category  | Publisher | Number        | Title                                                                                                                                                                                                                                                                                                    |
|-----------|-----------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Apparatus | IEC       | 61326-2-6     | Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 2-6: Particular requirements - In vitro diagnostic (IVD) medical equipment                                                                                                                                    |
| Apparatus | IEC       | 61326-3-1     | Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 3-1: Immunity requirements for safety-related systems and for equipment intended to perform safety-related functions (functional safety) - General industrial applications                                    |
| Apparatus | IEC       | 61326-3-2     | Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 3-2: Immunity requirements for safety-related systems and for equipment intended to perform safety-related functions (functional safety) - Industrial applications with specified electromagnetic environment |
| Apparatus | IEC       | 61543         | Residual current-operated protective devices (RCDs) for household and similar use - Electromagnetic compatibility                                                                                                                                                                                        |
| Apparatus | IEC       | 61800-3       | Adjustable speed electrical power drive systems - Part 3: EMC requirements and specific test methods                                                                                                                                                                                                     |
| Apparatus | IEC       | 61967-1       | Integrated circuits - Measurement of electromagnetic emissions, 150 kHz to 1 GHz - Part 1: General conditions and definitions                                                                                                                                                                            |
| Apparatus | IEC       | 62040-2       | Uninterruptible power systems (UPS) - Part 2: Electromagnetic compatibility EMC) requirements                                                                                                                                                                                                            |
| Apparatus | IEC       | 62041         | Power transformers, power supply units, reactors and similar products - EMC requirements                                                                                                                                                                                                                 |
| Apparatus | IEC       | 62209-1528    | Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-worn wireless communication devices - Human models, instrumentation and procedures (Frequency range of 4 MHz to 10 GHz)                                         |
| Apparatus | IEC       | 62310-2       | Static transfer systems (STS) - Part 2: Electromagnetic compatibility (EMC) requirements                                                                                                                                                                                                                 |
| Apparatus | IEC       | CISPR 11      | Industrial, scientific and medical (ISM) radio-frequency equipment -<br>Electromagnetic disturbance characteristics - Limits and methods of<br>measurement                                                                                                                                               |
| Apparatus | IEC       | CISPR 14-1    | Electromagnetic compatibility - Requirements for household appliances, electric tools and similar apparatus - Part 1: Emission                                                                                                                                                                           |
| Apparatus | IEC       | CISPR 14-2    | Electromagnetic compatibility – Requirements for household appliances, electric tools and similar apparatus – Part 2: Immunity – Product family standard                                                                                                                                                 |
| Apparatus | IEC       | CISPR 15      | Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment                                                                                                                                                                                      |
| Apparatus | IEC       | CISPR 32      | Electromagnetic compatibility of multimedia equipment – Emission requirements                                                                                                                                                                                                                            |
| Apparatus | IEC       | CISPR 35      | Electromagnetic compatibility of multimedia equipment - Immunity requirements                                                                                                                                                                                                                            |
| Apparatus | IEC       | TR 61000-3-13 | Electromagnetic compatibility (EMC) - Part 3-13: Limits - Assessment of emission limits for the connection of unbalanced installations to MV, HV and EHV power systems                                                                                                                                   |
| Apparatus | IEC       | TR 61000-3-14 | Electromagnetic compatibility (EMC) - Part 3-14: Assessment of emission limits for harmonics, interharmonics, voltage fluctuations and unbalance for the connection of disturbing installations to LV power systems                                                                                      |
| Apparatus | IEC       | TR 61000-3-15 | Electromagnetic compatibility (EMC) - Part 3-15: Limits - Assessment of low frequency electromagnetic immunity and emission requirements for dispersed generation systems in LV network                                                                                                                  |

|              |                    |               |                                                                                                                                                                                                                                                          | C |
|--------------|--------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Category     | Publisher          | Number        | Title                                                                                                                                                                                                                                                    |   |
| Apparatus    | IEC                | TR 61000-3-6  | Electromagnetic compatibility (EMC) - Part 3: Limits - Section 6: Assessment<br>of emission limits for distorting loads in MV and HV power systems - Basic<br>EMC publication                                                                            |   |
| Apparatus    | IEC                | TR 61000-3-7  | Electromagnetic compatibility (EMC) - Part 3: Limits - Section 7: Assessment of emission limits for fluctuating loads in MV and HV power systems - Basic EMC publication                                                                                 |   |
| Apparatus    | IEC                | TR 63170      | Measurement procedure for the evaluation of power density related to human exposure to radio frequency fields from wireless communication devices operating between 6 GHz and 100 GHz                                                                    |   |
| Apparatus    | IEC                | TS 61000-3-4  | Electromagnetic compatibility (EMC) - Part 3-4: Limits - Limitation of emission of harmonic currents in low-voltage power supply systems for equipment with rated current greater than 16 A                                                              |   |
| Apparatus    | IEC                | TS 61000-3-5  | Electromagnetic compatibility (EMC) - Part 3: Limits - Section 5: Limitation of voltage fluctuations and flicker in low-voltage power supply systems for equipment with rated current greater than 16 A                                                  |   |
| Apparatus    | IEC/IEEE           | 63195-1       | Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz) - Part 1: Measurement procedure                                              |   |
| Auto/Vehicle | Audi               | TL 82466      | Electrostatic Discharge                                                                                                                                                                                                                                  |   |
| Auto/Vehicle | BMW                | 600 13.0      | Electric- / Electronic components in cars BMW GS 95002 Electromagnetic<br>Compatibility (EMC) Requirements and Tests                                                                                                                                     |   |
| Auto/Vehicle | BMW                | GS 95003-2    | GS 95003-2 Electric- / Electronic assemblies in motor vehicles                                                                                                                                                                                           |   |
| Auto/Vehicle | Chrysler           | PF 9326       | Electrical electronic modules and motors                                                                                                                                                                                                                 |   |
| Auto/Vehicle | Diamer<br>Chrysler | DC-10614      | EMC Performance Requirements – Components                                                                                                                                                                                                                |   |
| Auto/Vehicle | Diamer<br>Chrysler | DC-10615      | Electrical System Performance Requirements for Electrical and Electronic Components                                                                                                                                                                      |   |
| Auto/Vehicle | Diamer<br>Chrysler | DC-11223      | Performance Requirements Vehicle Automotive Electromagnetic Compatibility Standards                                                                                                                                                                      |   |
| Auto/Vehicle | Diamer<br>Chrysler | DC-11224      | EMC Performance Requirements – Components                                                                                                                                                                                                                |   |
| Auto/Vehicle | Diamer<br>Chrysler | DC-11225      | EMC Supplemental Information and Alternative Component Requirements                                                                                                                                                                                      |   |
| Auto/Vehicle | Fiat               | 9.90110       | Electric and electronic devices for motor vehicles Freightliner 49-00085 EMC Requirements                                                                                                                                                                |   |
| Auto/Vehicle | FORD               | EMC-CS-2009.1 | Component EMC Specification. EMC-CS-2009.1                                                                                                                                                                                                               |   |
| Auto/Vehicle | FORD               | F-2           | Electrical and Electronics System Engineering                                                                                                                                                                                                            |   |
| Auto/Vehicle | FORD               | WSF-M22P5-A1  | Printed Circuit Boards, PTF, Double Sided, Flexible                                                                                                                                                                                                      |   |
| Auto/Vehicle | GM                 | GMW3091       | General Specification for Vehicles, Electromagnetic Compatibility (EMC)-<br>Engl; Revision H; Supersedes GMI 12559 R and GMI 12559 V                                                                                                                     |   |
| Auto/Vehicle | GM                 | GMW3097       | General Specification for Electrical/Electronic Components and Subsystems,<br>Electromagnetic Compatibility-Engl; Revision H; Supersedes GMW12559,<br>GMW3100, GMW12002R AND GMW12002V                                                                   |   |
| Auto/Vehicle | GM                 | GMW3103       | General Specification for Electrical/Electronic Components and Subsystems,<br>Electromagnetic Compatibility Global EMC Component/Subsystem<br>Validation Acceptance Process-Engl; Revision F; Contains Color; Replaces<br>GMW12003, GMW12004 and GMW3106 |   |
|              |                    |               |                                                                                                                                                                                                                                                          |   |

Honda

3838Z-S5AA-L000

Noise Simulation Test

Auto/Vehicle

| Category     | Publisher   | Number         | Title                                                                                                                                                                                                  |
|--------------|-------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Auto/Vehicle | Honda       | 3982Z-SDA-0030 | Battery Simulation Test                                                                                                                                                                                |
| Auto/Vehicle | Hyundia Kia | ES 39111-00    | EMC Requirements                                                                                                                                                                                       |
| Auto/Vehicle | Hyundia Kia | ES 95400-10    | Battery Simulation Tests                                                                                                                                                                               |
| Auto/Vehicle | Hyundia Kia | ES 96100-01    | EMC Requirements                                                                                                                                                                                       |
| Auto/Vehicle | IEC         | 60533          | Electrical and electronic installations in ships - Electromagnetic compatibility (EMC) - Ships with a metallic hull                                                                                    |
| Auto/Vehicle | IEC         | 61851-21-1     | Electric vehicle conductive charging system - Part 21-1 Electric vehicle on-<br>board charger EMC requirements for conductive connection to AC/DC supply                                               |
| Auto/Vehicle | IEC         | 61851-21-2     | Electric vehicle conductive charging system - Part 21-2: Electric vehicle requirements for conductive connection to an AC/DC supply - EMC requirements for off board electric vehicle charging systems |
| Auto/Vehicle | IEC         | 62236-1        | Railway applications - Electromagnetic compatibility - Part 1: General                                                                                                                                 |
| Auto/Vehicle | IEC         | 62236-2        | Railway applications - Electromagnetic compatibility - Part 2: Emission of the whole railway system to the outside world                                                                               |
| Auto/Vehicle | IEC         | 62236-3-1      | Railway applications - Electromagnetic compatibility - Part 3-1: Rolling stock - Train and complete vehicle                                                                                            |
| Auto/Vehicle | IEC         | 62236-3-2      | Railway applications - Electromagnetic compatibility - Part 3-2: Rolling stock – Apparatus                                                                                                             |
| Auto/Vehicle | IEC         | 62236-4        | Railway applications - Electromagnetic compatibility - Part 4: Emission and immunity of the signaling and telecommunications apparatus                                                                 |
| Auto/Vehicle | IEC         | 62236-5        | Railway applications - Electromagnetic compatibility - Part 5: Emission and immunity of fixed power supply installations and apparatus                                                                 |
| Auto/Vehicle | IEC         | CISPR 12       | Vehicles, boats and internal combustion engines - Radio disturbance characteristics - Limits and methods of measurement for the protection of off-board receivers                                      |
| Auto/Vehicle | IEC         | CISPR 25       | Vehicles, boats and internal combustion engines - Radio disturbance characteristics - Limits and methods of measurement for the protection of on-board receivers                                       |
| Auto/Vehicle | IEC         | TR 62482       | Electrical installations in ships - Electromagnetic compatibility - Optimizing of cable installations on ships - Testing method of routing distance                                                    |
| Auto/Vehicle | ISL         | 11451-3        | Road vehicles Electrical disturbances by narrowband radiated electromagnetic energy Vehicle test methods Part 3: On-board transmitter simulation                                                       |
| Auto/Vehicle | ISO         | 10605          | Road vehicles Test methods for electrical disturbances from electrostatic discharge                                                                                                                    |
| Auto/Vehicle | ISO         | 11451-1        | Road vehicles Vehicle test methods for electrical disturbances from narrowband radiated electromagnetic energy Part 1: General principles and terminology                                              |
| Auto/Vehicle | ISO         | 11451-2        | Road vehicles Vehicle test methods for electrical disturbances from narrowband radiated electromagnetic energy Part 2: Off-vehicle radiation sources                                                   |
| Auto/Vehicle | ISO         | 11451-4        | Road vehicles Vehicle test methods for electrical disturbances from narrowband radiated electromagnetic energy Part 4: Bulk current injection (BCI)                                                    |
| Auto/Vehicle | ISO         | 11452-1        | Road vehicles – Component test methods for electrical disturbances from narrowband radiated electromagnetic energy – Part 1: General principles and terminology                                        |

ITEM

CONSOLIDATED STDS

| Category     | Publisher | Number          | Title                                                                                                                                                                                                                                       |
|--------------|-----------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Auto/Vehicle | ISO       | 11452-10        | Road vehicles Component test methods for electrical disturbances<br>from narrowband radiated electromagnetic energy Part 10: Immunity to<br>conducted disturbances in the extended audio frequency range                                    |
| Auto/Vehicle | ISO       | 11452-11        | Road vehicles – Component test methods for electrical disturbances from narrowband radiated electromagnetic energy – Part 11: Reverberation chamber ISO 13766 Earth-moving machinery – Electromagnetic compatibility                        |
| Auto/Vehicle | ISO       | 11452-2         | Road vehicles – Component test methods for electrical disturbances from narrowband radiated electromagnetic energy – Part 2: Absorber-lined shielded enclosure                                                                              |
| Auto/Vehicle | ISO       | 11452-3         | Road vehicles – Component test methods for electrical disturbances from narrowband radiated electromagnetic energy – Part 3: Transverse electromagnetic mode (TEM) cell                                                                     |
| Auto/Vehicle | ISO       | 11452-4         | Road vehicles Component test methods for electrical disturbances from narrowband radiated electromagnetic energy Part 4: Bulk current injection (BCI)                                                                                       |
| Auto/Vehicle | ISO       | 11452-5         | Road vehicles – Component test methods for electrical disturbances from narrowband radiated electromagnetic energy – Part 5: Stripline                                                                                                      |
| Auto/Vehicle | ISO       | 11452-7         | Road vehicles Component test methods for electrical disturbances from narrowband radiated electromagnetic energy Part 7: Direct radio frequency (RF) power injection                                                                        |
| Auto/Vehicle | ISO       | 11452-8         | Road vehicles Component test methods for electrical disturbances from narrowband radiated electromagnetic energy Part 8: Immunity to magnetic fields                                                                                        |
| Auto/Vehicle | ISO       | 7637-1          | Road vehicles Electrical disturbances from conduction and coupling Part<br>1: Definitions and general considerations                                                                                                                        |
| Auto/Vehicle | ISO       | 7637-2          | Road vehicles Electrical disturbances from conduction and coupling Part 2: Electrical transient conduction along supply lines only                                                                                                          |
| Auto/Vehicle | ISO       | 7637-3          | Road vehicles Electrical disturbance by conduction and coupling Part<br>3: Vehicles with nominal 12 V or 24 V supply voltage Electrical transient<br>transmission by capacitive and inductive coupling via lines other than supply<br>lines |
| Auto/Vehicle | ISO       | TR 10305-1      | Road vehicles Calibration of electromagnetic field strength measuring devices Part 1: Devices for measurement of electromagnetic fields at frequencies > 0 Hz                                                                               |
| Auto/Vehicle | ISO       | TR 10305-2      | Road vehicles Calibration of electromagnetic field strength measuring devices Part 2: IEEE standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz                                   |
| Auto/Vehicle | ISO       | TS 14907-1      | Road transport and traffic telematics Electronic fee collection – Test procedures for user and fixed equipment – Part 1: Description of test procedures                                                                                     |
| Auto/Vehicle | ISO       | TS 14907-2      | Road transport and traffic telematics – Electronic fee collection Test procedures for user and fixed equipment Part 2: Conformance test for the onboard unit application interface                                                          |
| Auto/Vehicle | ISO       | TS 21609        | Road vehicles (EMC) guidelines for installation of aftermarket radio<br>frequency transmitting equipment                                                                                                                                    |
| Auto/Vehicle | KVECO     | 16-2103         | EMC Requirements                                                                                                                                                                                                                            |
| Auto/Vehicle | Lotus     | 17.39.01        | Lotus Engineering Standard: Electromagnetic Compatibility                                                                                                                                                                                   |
| Auto/Vehicle | Mack      | 606GS15         | EMC Requirements MAN 3285 EMC Requirements                                                                                                                                                                                                  |
| Auto/Vehicle | Mazda     | MES PW 67600    | Automobile parts standard (electronic devices)                                                                                                                                                                                              |
| Auto/Vehicle | Mercedes  | A 211 000 42 99 | Instruction specification of test method for E/Ecomponents                                                                                                                                                                                  |

| Category     | Publisher  | Number      | Title                                                                                                                                                                     |
|--------------|------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Auto/Vehicle | Mercedes   | AV EMV      | Electric aggregate and electronics in cars                                                                                                                                |
| Auto/Vehicle | Mercedes   | MBN 10284-2 | EMC requirements and tests of E/E-systems (component test procedures)                                                                                                     |
| Auto/Vehicle | Mercedes   | MBN 2200-2  | Electric / electronic elements, devices in trucks                                                                                                                         |
| Auto/Vehicle | Mitsubishi | ES-X82010   | General specification of environment tests on automotive electronic equipment                                                                                             |
| Auto/Vehicle | Nissan     | 28400 NDS03 | Low frequency surge resistance of electronic parts                                                                                                                        |
| Auto/Vehicle | Nissan     | 28400 NDS04 | Burst and Impulse Waveforms                                                                                                                                               |
| Auto/Vehicle | Nissan     | 28400 NDS07 | Immunity against low frequency surge (induction surge) of electronic parts                                                                                                |
| Auto/Vehicle | Nissan     | 28401 NDS02 | EMC requirements (instruction concerning vehicle and electrical)                                                                                                          |
| Auto/Vehicle | Peugeot    | B217110     | Load Dump Pulses                                                                                                                                                          |
| Auto/Vehicle | Porsche    | AV EMC EN   | EMC Requirements                                                                                                                                                          |
| Auto/Vehicle | PSA        | B21 7090    | EMC Requirements (electric and electronics equipment)                                                                                                                     |
| Auto/Vehicle | PSA        | B21 7110    | EMC requirements (electric and electronics equipment)                                                                                                                     |
| Auto/Vehicle | Renault    | 36.00.400   | Physical environment of electrical and electronic equipment                                                                                                               |
| Auto/Vehicle | Renault    | 36.00.808   | EMC requirements (cars and electrical / electronic components)                                                                                                            |
| Auto/Vehicle | SAE        | J1113/1     | Electromagnetic Compatibility Measurement Procedures and Limits for<br>Components of Vehicles, Boats (Up to 15 M), and Machines (Except Aircraft)<br>(50 Hz to 18 Ghz)    |
| Auto/Vehicle | SAE        | J1113/11    | Immunity to Conducted Transients on Power Leads                                                                                                                           |
| Auto/Vehicle | SAE        | J1113/12    | Electrical Interference by Conduction and Coupling - Capacitive and Inductive Coupling via Lines Other than Supply Lines                                                  |
| Auto/Vehicle | SAE        | J1113/13    | Electromagnetic Compatibility Measurement Procedure for Vehicle<br>Components - Part 13: Immunity to Electrostatic Discharge                                              |
| Auto/Vehicle | SAE        | J1113/2     | Electromagnetic Compatibility Measurement Procedures and Limits for Vehicle Components (Except Aircraft)Conducted Immunity, 15 Hz to 250 kHzAll Leads                     |
| Auto/Vehicle | SAE        | J1113/21    | Electromagnetic Compatibility Measurement Procedure for Vehicle<br>Components - Part 21: Immunity to Electromagnetic Fields, 30 MHz to 18<br>GHz, Absorber-Lined Chamber  |
| Auto/Vehicle | SAE        | J1113/26    | Electromagnetic Compatibility Measurement Procedure for Vehicle<br>Components - Immunity to AC Power Line Electric Fields                                                 |
| Auto/Vehicle | SAE        | J1113/27    | Electromagnetic Compatibility Measurements Procedure for Vehicle<br>Components - Part 27: Immunity to Radiated Electromagnetic Fields - Mode<br>Stir Reverberation Method |
| Auto/Vehicle | SAE        | J1113/28    | Electromagnetic Compatibility Measurements Procedure for Vehicle<br>ComponentsPart 28Immunity to Radiated Electromagnetic Fields<br>Reverberation Method (Mode Tuning)    |
| Auto/Vehicle | SAE        | J1113/4     | Immunity to Radiated Electromagnetic Fields-Bulk Current Injection (BCI)<br>Method                                                                                        |
| Auto/Vehicle | SAE        | J1752/1     | Electromagnetic Compatibility Measurement Procedures for Integrated<br>Circuits-Integrated Circuit EMC Measurement Procedures-General and<br>Definition                   |
| Auto/Vehicle | SAE        | J1752/2     | Measurement of Radiated Emissions from Integrated Circuits Surface Scan<br>Method (Loop Probe Method) 10 MHz to 3 GHz                                                     |

Measurement of Radiated Emissions from Integrated Circuits -- TEM/

Function Performance Status Classification for EMC Immunity Testing

Wideband TEM (GTEM) Cell Method; TEM Cell (150 kHz to 1 GHz),

Wideband TEM Cell (150 kHz to 8 GHz)

| $\cap$         |
|----------------|
| 0              |
| ž              |
| 5              |
| Š              |
| $\overline{O}$ |
|                |
| Β              |
| 5              |
| 4              |
| Ш              |
|                |
|                |
| Ч              |
|                |
| U.             |
| S              |
|                |

| Auto/vehiceSAEJ2556Radiated Emissions (RE) Narrowband Data Analysis-Power Spectral Density<br>(SD)Auto/vehiceSAEJ2628Characterization-Conducted ImmunityAuto/vehiceSAEJ2628Characterization-Conducted Immunity-Electrostatic Discharge (ESD)Auto/vehiceSAEJ551/15Vehicle Electromagnetic Immunity - Git/Vehicle Source (Reveeberation Chamber<br>Part 16 - Immunity to Rolf adted Electromagnetic FieldsAuto/vehiceSAEJ551/16Electromagnetic Immunity - Off-Vehicle Source (Reveeberation Chamber<br>Part 16 - Immunity to Rolf adted Electromagnetic FieldsAuto/vehiceSAEJ551/17Vehicle Electromagnetic Immunity - Off-Vehicle Source (Reveeberation Chamber<br>Part 16 - Immunity to Rolf adted Electromagnetic FieldsAuto/vehiceSacataTB14100Electromagnetic Immunity - Off-Vehicle Source (Reveeberation Chamber<br>Part 16 - Immunity to Rolf adted Electromagnetic FieldsAuto/vehiceSacataTB14100EMC RequirementsAuto/vehiceSacataTB57001GEngineering standard (AES-TRC computers)Auto/vehiceToyataTS57001GField Ground TestAuto/vehiceToyataTS57001GField Ground TestAuto/vehiceToyataTS57001GField Ground TestAuto/vehiceToyataTS57001GIcating Ground TestAuto/vehiceToyataTS57001GIcating Ground TestAuto/vehiceToyataTS57001GIcating Ground TestAuto/vehiceToyataTS57001GIcating Ground TestAuto/vehiceToyataTS57001G <td< th=""><th>Auto/Vehicle</th><th>SAE</th><th>J2556</th><th>Radiated Emissions (RE) Narrowband Data AnalysisPower Spectral Density (PSD)</th></td<> | Auto/Vehicle | SAE    | J2556          | Radiated Emissions (RE) Narrowband Data AnalysisPower Spectral Density (PSD) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|----------------|------------------------------------------------------------------------------|
| Auto/VehicleSAEJ2628Characterization-Conducted ImmunityAuto/VehicleSAEJ551/16Vehicle Electromagnetic ImmunityElectrostatic Discharge (ESD)Auto/VehicleSAEJ551/16Electromagnetic Immunity - Off-Vehicle Source (Reverberation Chamber<br>Methiod) - Part 16 - Immunity to Radiated Electromagnetic FieldsAuto/VehicleSAEJ551/17Vehicle Electromagnetic Immunity - Power Line Magnetic FieldsAuto/VehicleSAEJ551/17Vehicle Electromagnetic Inmunity - Power Line Magnetic FieldsAuto/VehicleScaniaTB1400EMC RequirementsAuto/VehicleScaniaTB1700Load Dump TestAuto/VehicleToyotaTSC203GEngineering standard (ABS-TRC computers)Auto/VehicleToyotaTSC7001G-5.1Power Supply Voltage Characteristic TestAuto/VehicleToyotaTSC7001G-5.2Field Decay TestAuto/VehicleToyotaTSC7001G-5.3Load Dump Test-1Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-1Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaT                                                                                                                                                                                                                                                                                    | Auto/Vehicle | SAE    | J2556          |                                                                              |
| Auto/VehicleSAEJ551/15Vehicle Electromagnetic Immunity -Electrostatic Discharge (ESD)Auto/VehicleSAEJ551/16Electromagnetic Immunity - Off-Vehicle Source (Reverberation Chamber<br>Method) - Part 16 - Immunity to Radiated Electromagnetic FieldsAuto/VehicleSAEJ551/17Vehicle Electromagnetic Immunity - Dowr Line Magnetic FieldsAuto/VehicleSAEJ551/5Preformance Levels and Methods of Measurement of Magnetic and Electric<br>Field Strength from Electric Vehicles, Broadband, 9 kHz To 30 MHzAuto/VehicleScaniaTB1400EMC RequirementsAuto/VehicleScaniaTB1700Load Dump TestAuto/VehicleToyotaTSC203GEngineering standard (ABS-TRC computers)Auto/VehicleToyotaTSC7001G-5.1Field Decay TestAuto/VehicleToyotaTSC7001G-5.3Field Decay TestAuto/VehicleToyotaTSC7001G-5.5Load Dump Test-1Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-2Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3 <t< td=""><td>Auto/Vehicle</td><td>SAE</td><td>J2628</td><td>CharacterizationConducted Immunity</td></t<>                                                                                                                                                 | Auto/Vehicle | SAE    | J2628          | CharacterizationConducted Immunity                                           |
| Auto/VehicleSAEJ551/16Electromagnetic immunity - Off-Vehicle Source (Reverberation Chamber<br>Method) - Part 16 - Immunity to Radiated Electromagnetic FieldsAuto/VehicleSAEJ551/17Vehicle Electromagnetic Immunity - Power Line Magnetic FieldsAuto/VehicleSAEJ551/15FieldsmentsAuto/VehicleScaniaTB1400EMC RequirementsAuto/VehicleScaniaTB1700Load Dump TestAuto/VehicleSmartDE10005BEMC requirements (electric aggregate and electronics in cars)Auto/VehicleToyotaTSC203GEngineering standard (ABS-TRC computers)Auto/VehicleToyotaTSC7001G-5.1Power Supply Voltage Characteristic TestAuto/VehicleToyotaTSC7001G-5.2Field Deay TestAuto/VehicleToyotaTSC7001G-5.3Load Dump Test-1Auto/VehicleToyotaTSC7001G-5.4Induction Noise ResistanceAuto/VehicleToyotaTSC7001G-5.5Load Dump Test-1Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-1Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-1Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-1Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-1Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-2Auto/VehicleToyotaTSC7001G-5.7Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.7Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaT                                                                                                                                                                                                                                                                                  | Auto/Vehicle | SAE    | J2628          | Characterization–Conducted Immunity                                          |
| Auto/vehicleSAEJSS1/16Method) - Part 16 - Immunity to Radiated Electromagnetic FieldsAuto/VehicleSAEJ551/17Vehicle Electromagnetic Immunity - Power Line Magnetic FieldsAuto/VehicleSAEJ551/17Performance Levels and Methods of Measurement of Magnetic and ElectricAuto/VehicleScaniaTB1400EMC RequirementsAuto/VehicleScaniaTB1700Load Dump TestAuto/VehicleToyotaTSC203GEngineering standard (ABS-TRC computers)Auto/VehicleToyotaTSC7001G-6.1Power Supply Voltage Characteristic TestAuto/VehicleToyotaTSC7001G-5.2Field Decay TestAuto/VehicleToyotaTSC7001G-5.3Floating Ground TestAuto/VehicleToyotaTSC7001G-5.5Load Dump Test-1Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-2Auto/VehicleToyotaTSC7001G-5.5Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.5Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.6Revers VoltageAuto/Ve                                                                                                                                                                                                                                                                                                            | Auto/Vehicle | SAE    | J551/15        | Vehicle Electromagnetic ImmunityElectrostatic Discharge (ESD)                |
| Auto/VehicleSAEJ551/5Performance Levels and Methods of Measurement of Magnetic and Electric<br>Field Strength from Electric Vehicles, Broadband, 9 kHz To 30 MHzAuto/VehicleScaniaTB1400EMC RequirementsAuto/VehicleScaniaTB1700Load Dump TestAuto/VehicleSmartDE10005BEMC requirements (electric aggregate and electronics in cars)Auto/VehicleToytaTSC203GEngineering standard (ABS-TRC computers)Auto/VehicleToytaTSC7001GEngineering standard (electric noise of electronic devices)Auto/VehicleToytaTSC7001G-5.1Power Supply Voltage Characteristic TestAuto/VehicleToytaTSC7001G-5.2Field Decay TestAuto/VehicleToytaTSC7001G-5.3Icoating Ground TestAuto/VehicleToytaTSC7001G-5.53Load Dump Test-1Auto/VehicleToytaTSC7001G-5.54Load Dump Test-3Auto/VehicleToytaTSC7001G-5.55Load Dump Test-3Auto/VehicleToytaTSC7001G-5.55Load Dump Test-3Auto/VehicleToytaTSC7001G-5.54Load Dump Test-3Auto/VehicleToytaTSC7001G-5.55Load Dump Test-3Auto/VehicleToytaTSC7001G-5.73Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToytaTSC7001G-5.83Reverse VoltageAuto/VehicleToytaTSC7001G-5.84Reverse VoltageAuto/VehicleToytaTSC7001G-5.74Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyta                                                                                                                                                                                                                                                                              | Auto/Vehicle | SAE    | J551/16        |                                                                              |
| Auto/VehicleSACJ SSIField Strength from Electric Vehicles, Broadband, 9 kHz To 30 MHzAuto/VehicleScaniaTB1400EMC RequirementsAuto/VehicleScaniaTB1700Load Dump TestAuto/VehicleSmartDE10005BEMC requirements (electric aggregate and electronics in cars)Auto/VehicleToyotaTSC203GEngineering standard (ABS-TRC computers)Auto/VehicleToyotaTSC7001GEngineering standard (electric noise of electronic devices)Auto/VehicleToyotaTSC7001G-5.1Power Supply Voltage Characteristic TestAuto/VehicleToyotaTSC7001G-5.2Field Decay TestAuto/VehicleToyotaTSC7001G-5.3Ioating Ground TestAuto/VehicleToyotaTSC7001G-5.4Load Dump Test-1Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.7Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.4Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.4Ignition Pulse (Battery Waveforms) Test-2 <td>Auto/Vehicle</td> <td>SAE</td> <td>J551/17</td> <td>Vehicle Electromagnetic Immunity Power Line Magnetic Fields</td>                                                                                                                                                                    | Auto/Vehicle | SAE    | J551/17        | Vehicle Electromagnetic Immunity Power Line Magnetic Fields                  |
| Auto/VehicleScaniaTB1700Load Dump TestAuto/VehicleSmartDE10005BEMC requirements (electric aggregate and electronics in cars)Auto/VehicleToyotaTSC203GEngineering standard (ABS-TRC computers)Auto/VehicleToyotaTSC7001GEngineering standard (electric noise of electronic devices)Auto/VehicleToyotaTSC7001G-5.1Power Supply Voltage Characteristic TestAuto/VehicleToyotaTSC7001G-5.2Field Decay TestAuto/VehicleToyotaTSC7001G-5.3Floating Ground TestAuto/VehicleToyotaTSC7001G-5.4Load Dump Test-1Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.7Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.7Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.7Reverse VoltageAuto/VehicleToyotaTSC7001G-5.7Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.7Reverse VoltageAuto/VehicleToyotaTSC7001G-5.7Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.7Reverse Voltage <tr< td=""><td>Auto/Vehicle</td><td>SAE</td><td>J551/5</td><td></td></tr<>                                                                                                                                                                                                                            | Auto/Vehicle | SAE    | J551/5         |                                                                              |
| Auto/VehicleSmartDE 10005BEMC requirements (electric aggregate and electronics in cars)Auto/VehicleToyotaTSC203GEngineering standard (ABS-TRC computers)Auto/VehicleToyotaTSC7001GEngineering standard (electric noise of electronic devices)Auto/VehicleToyotaTSC7001G-5.1Power Supply Voltage Characteristic TestAuto/VehicleToyotaTSC7001G-5.2Field Decay TestAuto/VehicleToyotaTSC7001G-5.3Floating Ground TestAuto/VehicleToyotaTSC7001G-5.4Induction Noise ResistanceAuto/VehicleToyotaTSC7001G-5.5Load Dump Test-1Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-2Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.7.4Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.7.4Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.8Reverse VoltageAuto/VehicleToyotaTSC7001G-5.8Reverse VoltageAuto/VehicleToyotaTSC7001G-5.7.4Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.8Reverse VoltageAuto/VehicleToyotaTSC7001G-5.8Reverse Voltage <tr<< td=""><td>Auto/Vehicle</td><td>Scania</td><td>TB1400</td><td>EMC Requirements</td></tr<<>                                                                                                                                                                                                        | Auto/Vehicle | Scania | TB1400         | EMC Requirements                                                             |
| Auto/VehicleToyotaTSC203GEngineering standard (ABS-TRC computers)Auto/VehicleToyotaTSC7001GEngineering standard (ABS-TRC computers)Auto/VehicleToyotaTSC7001GEngineering standard (electric noise of electronic devices)Auto/VehicleToyotaTSC7001G-5.1Power Supply Voltage Characteristic TestAuto/VehicleToyotaTSC7001G-5.2Field Decay TestAuto/VehicleToyotaTSC7001G-5.3Floating Ground TestAuto/VehicleToyotaTSC7001G-5.4Induction Noise ResistanceAuto/VehicleToyotaTSC7001G-5.5Load Dump Test-1Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.7Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.8Reverse VoltageAuto/VehicleToyotaTSC7001G-5.8Reverse VoltageAuto/VehicleToyotaTSC7001G-5.8Reverse VoltageAuto/VehicleToyotaTSC7006G-4.4.2Vide Band-Width Antenna Nearby Test (0.4 to 2 GHz)Auto/VehicleToyotaTSC7006G-4.4.3Radio Equipment Antenna Nearby Test (0.8 MHz)A                                                                                                                                                                                                                                                                                                                | Auto/Vehicle | Scania | TB1700         | Load Dump Test                                                               |
| Auto/VehicleToyotaTSC7001GEngineering standard (electric noise of electronic devices)Auto/VehicleToyotaTSC7001G-5.1Power Supply Voltage Characteristic TestAuto/VehicleToyotaTSC7001G-5.2Field Decay TestAuto/VehicleToyotaTSC7001G-5.3Floating Ground TestAuto/VehicleToyotaTSC7001G-5.4Induction Noise ResistanceAuto/VehicleToyotaTSC7001G-5.5.3Load Dump Test-1Auto/VehicleToyotaTSC7001G-5.5.4Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5.4Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5.4Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5.4Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.7.4Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.7.4Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.7.4Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.8Reverse VoltageAuto/VehicleToyotaTSC7001G-5.4Vide Band-Width Antenna Nearby Test (0.4 to 2 GHz)Auto/VehicleToyotaTSC7001G-5.4Wide Band-Width Antenna Nearby Test (28 MHz)Auto/VehicleToyotaTSC7001G-5.4Static Electricity TestAuto/VehicleToyotaTSC7001G-5.5TEM Cell Test (1 to 400 MHz)Auto/VehicleToyotaTSC7003TENC702G-5Auto/VehicleToyotaTSC702G-6TEM Ce                                                                                                                                                                                                                                                                                              | Auto/Vehicle | Smart  | DE10005B       | EMC requirements (electric aggregate and electronics in cars)                |
| Auto/VehicleToyotaTSC7001G-5.1Power Supply Voltage Characteristic TestAuto/VehicleToyotaTSC7001G-5.2Field Decay TestAuto/VehicleToyotaTSC7001G-5.3Floating Ground TestAuto/VehicleToyotaTSC7001G-5.4Induction Noise ResistanceAuto/VehicleToyotaTSC7001G-5.5.3Load Dump Test-1Auto/VehicleToyotaTSC7001G-5.5.4Load Dump Test-2Auto/VehicleToyotaTSC7001G-5.5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.7.3Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.7.4Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.8Reverse VoltageAuto/VehicleToyotaTSC7001G-5.8Reverse VoltageAuto/VehicleToyotaTSC7001G-5.8Reverse VoltageAuto/VehicleToyotaTSC7001G-5.8Reverse VoltageAuto/VehicleToyotaTSC7001G-5.8Reverse VoltageAuto/VehicleToyotaTSC7001G-5.7.4Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.8Reverse VoltageAuto/VehicleToyotaTSC7001G-5.8Reverse VoltageAuto/VehicleToyotaTSC7001G-5.7Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.8Revers                                                                                                                                                                                                                                                                                                                                       | Auto/Vehicle | Toyota | TSC203G        | Engineering standard (ABS-TRC computers)                                     |
| Auto/VehicleToyotaTSC7001G-5.2Field Decay TestAuto/VehicleToyotaTSC7001G-5.3Floating Ground TestAuto/VehicleToyotaTSC7001G-5.4Induction Noise ResistanceAuto/VehicleToyotaTSC7001G-5.5.3Load Dump Test-1Auto/VehicleToyotaTSC7001G-5.5.4Load Dump Test-2Auto/VehicleToyotaTSC7001G-5.5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5.4Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5.4Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.7.3Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.7.4Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.7.3Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.7.4Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.7.3Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.7.3Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.7.3Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.7.3Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.7.3Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.7.3Ignition Pulse (Battery Waveforms) Test                                                                                                                                                                                                                                             | Auto/Vehicle | Toyota | TSC7001G       | Engineering standard (electric noise of electronic devices)                  |
| Auto/VehicleToyotaTSC7001G-5.3Floating Ground TestAuto/VehicleToyotaTSC7001G-5.4Induction Noise ResistanceAuto/VehicleToyotaTSC7001G-5.5.3Load Dump Test-1Auto/VehicleToyotaTSC7001G-5.5.4Load Dump Test-2Auto/VehicleToyotaTSC7001G-5.5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5.6Over Voltage TestAuto/VehicleToyotaTSC7001G-5.7.3Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.7.4Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.7.4Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.4Wide Band-Width Antenna Nearby Test (0.4 to 2 GHz)Auto/VehicleToyotaTSC7006G-4.4.2Wide Band-Width Antenna Nearby Test (0.4 to 2 GHz)Auto/VehicleToyotaTSC7006G-4.4.3Radio Equipment Antenna Nearby Test (28 MHz)Auto/VehicleToyotaTSC7006G-4.4.4Mobile Phone Antenna Nearby Test (835 MHz)Auto/VehicleToyotaTSC7025G-5TEM Cell Test (1 to 400 MHz)Auto/VehicleToyotaTSC7025G-6Free Field Immunity Test (20 MHz to 1 GHz AM, 0.8 to 2 GHz PM)Auto/VehicleToyotaTSC7025G-6Strip Line Test (20 -400 MHz)                                                                                                                                                                                                                                                                                                                                                             | Auto/Vehicle | Toyota | TSC7001G-5.1   | Power Supply Voltage Characteristic Test                                     |
| Auto/VehicleToyotaTSC7001G-5.4Induction Noise ResistanceAuto/VehicleToyotaTSC7001G-5.5.3Load Dump Test-1Auto/VehicleToyotaTSC7001G-5.5.4Load Dump Test-2Auto/VehicleToyotaTSC7001G-5.5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.7.3Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.7.4Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.7.4Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.4.4Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.4.4Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.4.4Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7006G-4.4.2Wide Band-Width Antenna Nearby Test (0.4 to 2 GHz)Auto/VehicleToyotaTSC7006G-4.4.3Radio Equipment Antenna Nearby Test (0.4 to 2 GMz)Auto/VehicleToyotaTSC7006G-4.4.3Robile Phone Antenna Nearby Test (0.4 to 2 GMz)Auto/VehicleToyotaTSC7018GStatic Electricity TestAuto/VehicleToyotaTSC7025G-5TEM Cell Test (1 to 400 MHz)Auto/VehicleToyotaTSC7025G-6Free Field Immunity Test (20 MHz to 1 GHz AM, 0.8 to 2 GHz PM)Auto/VehicleToyotaTSC7                                                                                                                                                                                                                                            | Auto/Vehicle | Toyota | TSC7001G-5.2   | Field Decay Test                                                             |
| Auto/VehicleToyotaTSC7001G-5.5.3Load Dump Test-1Auto/VehicleToyotaTSC7001G-5.5.4Load Dump Test-2Auto/VehicleToyotaTSC7001G-5.5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.6Over Voltage TestAuto/VehicleToyotaTSC7001G-5.7.3Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.7.4Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.8Reverse VoltageAuto/VehicleToyotaTSC7001G-5.8Reverse VoltageAuto/VehicleToyotaTSC7001G-5.4Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.8Reverse VoltageAuto/VehicleToyotaTSC7001G-4.4.2Wide Band-Width Antenna Nearby Test (0.4 to 2 GHz)Auto/VehicleToyotaTSC7006G-4.4.3Radio Equipment Antenna nearby Test (0.4 to 2 GHz)Auto/VehicleToyotaTSC7006G-4.4.4Mobile Phone Antenna Nearby Test (835 MHz)Auto/VehicleToyotaTSC7025G-5TEM Cell Test (1 to 400 MHz)Auto/VehicleToyotaTSC7025G-6Free Field Immunity Test (20 MHz to 1 GHz AM, 0.8 to 2 GHz PM)Auto/VehicleToyotaTSC7025G-7Strip Line Test (20 - 400 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Auto/Vehicle | Toyota | TSC7001G-5.3   | Floating Ground Test                                                         |
| Auto/VehicleToyotaTSC7001G-5.5.4Load Dump Test-2Auto/VehicleToyotaTSC7001G-5.5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.6.5Over Voltage TestAuto/VehicleToyotaTSC7001G-5.7.3Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.7.4Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.7.4Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.7.4Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.8Reverse VoltageAuto/VehicleToyotaTSC7006G-4.4.2Wide Band-Width Antenna Nearby Test (0.4 to 2 GHz)Auto/VehicleToyotaTSC7006G-4.4.3Radio Equipment Antenna nearby Test (28 MHz)Auto/VehicleToyotaTSC7006G-4.4.3Static Electricity TestAuto/VehicleToyotaTSC7025G-5TEM Cell Test (1 to 400 MHz)Auto/VehicleToyotaTSC7025G-6Free Field Immunity Test (20 MHz to 1 GHz AM, 0.8 to 2 GHz PM)Auto/VehicleToyotaTSC7025G-7Strip Line Test (20 - 400 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Auto/Vehicle | Toyota | TSC7001G-5.4   | Induction Noise Resistance                                                   |
| Auto/VehicleToyotaTSC7001G-5.5.5Load Dump Test-3Auto/VehicleToyotaTSC7001G-5.6.4Over Voltage TestAuto/VehicleToyotaTSC7001G-5.7.3Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.7.4Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.8.4Reverse VoltageAuto/VehicleToyotaTSC7006G-4.4.2Wide Band-Width Antenna Nearby Test (0.4 to 2 GHz)Auto/VehicleToyotaTSC7006G-4.4.3Radio Equipment Antenna nearby Test (28 MHz)Auto/VehicleToyotaTSC7006G-4.4.4Mobile Phone Antenna Nearby Test (835 MHz)Auto/VehicleToyotaTSC701G-5.5TEM Cell Test (1 to 400 MHz)Auto/VehicleToyotaTSC7025G-6Free Field Immunity Test (20 MHz to 1 GHz AM, 0.8 to 2 GHz PM)Auto/VehicleToyotaTSC7025G-7Strip Line Test (20 - 400 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Auto/Vehicle | Toyota | TSC7001G-5.5.3 | Load Dump Test-1                                                             |
| Auto/VehicleToyotaTSC7001G-5.6Over Voltage TestAuto/VehicleToyotaTSC7001G-5.7.3Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.7.4Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.8Reverse VoltageAuto/VehicleToyotaTSC7006G-4.4.2Wide Band-Width Antenna Nearby Test (0.4 to 2 GHz)Auto/VehicleToyotaTSC7006G-4.4.3Radio Equipment Antenna nearby Test (28 MHz)Auto/VehicleToyotaTSC7006G-4.4.4Mobile Phone Antenna Nearby Test (835 MHz)Auto/VehicleToyotaTSC7018GStatic Electricity TestAuto/VehicleToyotaTSC7025G-5TEM Cell Test (1 to 400 MHz)Auto/VehicleToyotaTSC7025G-6Free Field Immunity Test (20 MHz to 1 GHz AM, 0.8 to 2 GHz PM)Auto/VehicleToyotaTSC7025G-7Strip Line Test (20 - 400 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Auto/Vehicle | Toyota | TSC7001G-5.5.4 | Load Dump Test-2                                                             |
| Auto/VehicleToyotaTSC7001G-5.7.3Ignition Pulse (Battery Waveforms) Test-1Auto/VehicleToyotaTSC7001G-5.7.4Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.8Reverse VoltageAuto/VehicleToyotaTSC7006G-4.4.2Wide Band-Width Antenna Nearby Test (0.4 to 2 GHz)Auto/VehicleToyotaTSC7006G-4.4.3Radio Equipment Antenna nearby Test (28 MHz)Auto/VehicleToyotaTSC7006G-4.4.4Mobile Phone Antenna Nearby Test (835 MHz)Auto/VehicleToyotaTSC7006G-4.4.4Mobile Phone Antenna Nearby Test (835 MHz)Auto/VehicleToyotaTSC7018GStatic Electricity TestAuto/VehicleToyotaTSC7025G-5TEM Cell Test (1 to 400 MHz)Auto/VehicleToyotaTSC7025G-6Free Field Immunity Test (20 MHz to 1 GHz AM, 0.8 to 2 GHz PM)Auto/VehicleToyotaTSC7025G-7Strip Line Test (20 - 400 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Auto/Vehicle | Toyota | TSC7001G-5.5.5 | Load Dump Test-3                                                             |
| Auto/VehicleToyotaTSC7001G-5.7.4Ignition Pulse (Battery Waveforms) Test-2Auto/VehicleToyotaTSC7001G-5.8Reverse VoltageAuto/VehicleToyotaTSC7006G-4.4.2Wide Band-Width Antenna Nearby Test (0.4 to 2 GHz)Auto/VehicleToyotaTSC7006G-4.4.3Radio Equipment Antenna nearby Test (28 MHz)Auto/VehicleToyotaTSC7006G-4.4.4Mobile Phone Antenna Nearby Test (835 MHz)Auto/VehicleToyotaTSC7018GStatic Electricity TestAuto/VehicleToyotaTSC7025G-5TEM Cell Test (1 to 400 MHz)Auto/VehicleToyotaTSC7025G-6Strip Line Test (20 MHz to 1 GHz AM, 0.8 to 2 GHz PM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Auto/Vehicle | Toyota | TSC7001G-5.6   | Over Voltage Test                                                            |
| Auto/VehicleToyotaTSC7001G-5.8Reverse VoltageAuto/VehicleToyotaTSC7006G-4.4.2Wide Band-Width Antenna Nearby Test (0.4 to 2 GHz)Auto/VehicleToyotaTSC7006G-4.4.3Radio Equipment Antenna nearby Test (28 MHz)Auto/VehicleToyotaTSC7006G-4.4.4Mobile Phone Antenna Nearby Test (835 MHz)Auto/VehicleToyotaTSC7018GStatic Electricity TestAuto/VehicleToyotaTSC7025G-5TEM Cell Test (1 to 400 MHz)Auto/VehicleToyotaTSC7025G-6Free Field Immunity Test (20 MHz to 1 GHz AM, 0.8 to 2 GHz PM)Auto/VehicleToyotaTSC7025G-7Strip Line Test (20 - 400 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Auto/Vehicle | Toyota | TSC7001G-5.7.3 | Ignition Pulse (Battery Waveforms) Test-1                                    |
| Auto/VehicleToyotaTSC7006G-4.4.2Wide Band-Width Antenna Nearby Test (0.4 to 2 GHz)Auto/VehicleToyotaTSC7006G-4.4.3Radio Equipment Antenna nearby Test (28 MHz)Auto/VehicleToyotaTSC7006G-4.4.4Mobile Phone Antenna Nearby Test (835 MHz)Auto/VehicleToyotaTSC7018GStatic Electricity TestAuto/VehicleToyotaTSC7025G-5TEM Cell Test (1 to 400 MHz)Auto/VehicleToyotaTSC7025G-6Free Field Immunity Test (20 MHz to 1 GHz AM, 0.8 to 2 GHz PM)Auto/VehicleToyotaTSC7025G-7Strip Line Test (20 - 400 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Auto/Vehicle | Toyota | TSC7001G-5.7.4 | Ignition Pulse (Battery Waveforms) Test-2                                    |
| Auto/VehicleToyotaTSC7006G-4.4.3Radio Equipment Antenna nearby Test (28 MHz)Auto/VehicleToyotaTSC7006G-4.4.4Mobile Phone Antenna Nearby Test (835 MHz)Auto/VehicleToyotaTSC7018GStatic Electricity TestAuto/VehicleToyotaTSC7025G-5TEM Cell Test (1 to 400 MHz)Auto/VehicleToyotaTSC7025G-6Free Field Immunity Test (20 MHz to 1 GHz AM, 0.8 to 2 GHz PM)Auto/VehicleToyotaTSC7025G-7Strip Line Test (20 - 400 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Auto/Vehicle | Toyota | TSC7001G-5.8   | Reverse Voltage                                                              |
| Auto/VehicleToyotaTSC7006G-4.4.4Mobile Phone Antenna Nearby Test (835 MHz)Auto/VehicleToyotaTSC7018GStatic Electricity TestAuto/VehicleToyotaTSC7025G-5TEM Cell Test (1 to 400 MHz)Auto/VehicleToyotaTSC7025G-6Free Field Immunity Test (20 MHz to 1 GHz AM, 0.8 to 2 GHz PM)Auto/VehicleToyotaTSC7025G-7Strip Line Test (20 - 400 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Auto/Vehicle | Toyota | TSC7006G-4.4.2 | Wide Band-Width Antenna Nearby Test (0.4 to 2 GHz)                           |
| Auto/VehicleToyotaTSC7018GStatic Electricity TestAuto/VehicleToyotaTSC7025G-5TEM Cell Test (1 to 400 MHz)Auto/VehicleToyotaTSC7025G-6Free Field Immunity Test (20 MHz to 1 GHz AM, 0.8 to 2 GHz PM)Auto/VehicleToyotaTSC7025G-7Strip Line Test (20 - 400 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Auto/Vehicle | Toyota | TSC7006G-4.4.3 | Radio Equipment Antenna nearby Test (28 MHz)                                 |
| Auto/VehicleToyotaTSC7025G-5TEM Cell Test (1 to 400 MHz)Auto/VehicleToyotaTSC7025G-6Free Field Immunity Test (20 MHz to 1 GHz AM, 0.8 to 2 GHz PM)Auto/VehicleToyotaTSC7025G-7Strip Line Test (20 - 400 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Auto/Vehicle | Toyota | TSC7006G-4.4.4 | Mobile Phone Antenna Nearby Test (835 MHz)                                   |
| Auto/VehicleToyotaTSC7025G-6Free Field Immunity Test (20 MHz to 1 GHz AM, 0.8 to 2 GHz PM)Auto/VehicleToyotaTSC7025G-7Strip Line Test (20 - 400 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Auto/Vehicle | Toyota | TSC7018G       | Static Electricity Test                                                      |
| Auto/Vehicle         Toyota         TSC7025G-7         Strip Line Test (20 - 400 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Auto/Vehicle | Toyota | TSC7025G-5     | TEM Cell Test (1 to 400 MHz)                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Auto/Vehicle | Toyota | TSC7025G-6     | Free Field Immunity Test (20 MHz to 1 GHz AM, 0.8 to 2 GHz PM)               |
| Auto/Vehicle Toyota TSC7026G-3.4 Narrow Band Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Auto/Vehicle | Toyota | TSC7025G-7     | Strip Line Test (20 - 400 MHz)                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Auto/Vehicle | Toyota | TSC7026G-3.4   | Narrow Band Emissions                                                        |

Publisher

SAE

SAE

Category

Auto/Vehicle

Auto/Vehicle

Number

J1752/3

J1812

CONSOLIDATED STDS

| Category     | Publisher | Number          | Title                                                                                                                                                                                              |
|--------------|-----------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Auto/Vehicle | Toyota    | TSC7203         | Voltage Drop / Micro Drops                                                                                                                                                                         |
| Auto/Vehicle | Toyota    | TSC7508G-3.3.1  | Conductive Noise in FM and TV Bands                                                                                                                                                                |
| Auto/Vehicle | Toyota    | TSC7508G-3.3.2  | Conductive noise in LW, AM and SW Bands                                                                                                                                                            |
| Auto/Vehicle | Toyota    | TSC7508G-3.3.3  | Radiated Noise in FM and TV Bands                                                                                                                                                                  |
| Auto/Vehicle | Toyota    | TSC7508G-3.3.4  | Radiated Noise in AM, SW, and LW Bands                                                                                                                                                             |
| Auto/Vehicle | Toyota    | TXC7315G        | Electrostatic Discharge (Gap Method)                                                                                                                                                               |
| Auto/Vehicle | Viston    | ES-XU3F-1316-AA | Electronic Component - Subsystem Electromagnetic Compatibility (EMC) Requirements and Test Procedures                                                                                              |
| Auto/Vehicle | Volvo     | N/A             | EMC Requirements EMC requirements for 12V and 24V systems                                                                                                                                          |
| Auto/Vehicle | VW        | TL 801 01       | Electric and electronic components in cars                                                                                                                                                         |
| Auto/Vehicle | VW        | TL 820 66       | Conducted Interference                                                                                                                                                                             |
| Auto/Vehicle | VW        | TL 821 66       | EMC requirements of electronic components - bulk current injection (BCI)                                                                                                                           |
| Auto/Vehicle | VW        | TL 823 66       | Coupled Interference on Sensor Cables                                                                                                                                                              |
| Auto/Vehicle | VW        | TL 824 66       | Immunity Against Electrostatic Discharge                                                                                                                                                           |
| Auto/Vehicle | VW        | TL 965          | Short-Distance Interference Suppression                                                                                                                                                            |
| General      | ANSI      | S20.20          | ESD Association Standard for the Development of and Electrostatic Discharge Control Program for the Protection of Electronic Parts, Assemblies, and Equipment                                      |
| General      | IEC       | 60050-161       | International Electrotechnical Vocabulary. Chapter 161: Electromagnetic compatibility                                                                                                              |
| General      | IEC       | 60469           | Transitions, pulses and related waveforms - Terms, definitions and algorithms                                                                                                                      |
| General      | IEC       | 60940           | Guidance information on the application of capacitors, resistors, inductors and complete filter units for electromagnetic interference suppression                                                 |
| General      | IEC       | 61000-1-2       | Electromagnetic compatibility (EMC) - Part 1-2: General - Methodology for the achievement of the functional safety of electrical and electronic equipment with regard to electromagnetic phenomena |
| General      | IEc       | 61000-2-10      | Electromagnetic compatibility (EMC) - Part 2-10: Environment - Description of HEMP environment - Conducted disturbance                                                                             |
| General      | IEC       | 61000-2-11      | Electromagnetic compatibility (EMC) - Part 2-11: Environment - Classification of HEMP environments                                                                                                 |
| General      | IEC       | 61000-2-12      | Electromagnetic compatibility (EMC) - Part 2-12: Environment - Compatibility levels for low-frequency conducted disturbances and signaling in public medium-voltage power supply systems           |
| General      | IEC       | 61000-2-13      | Electromagnetic compatibility (EMC) - Part 2-13: Environment - High-power electromagnetic (HPEM) environments - Radiated and conducted                                                             |
| General      | IEC       | 61000-2-2       | Electromagnetic compatibility (EMC) - Part 2-2: Environment - Compatibility levels for low-frequency conducted disturbances and signaling in public low-voltage power supply systems               |
| General      | IEC       | 61000-2-4       | Electromagnetic compatibility (EMC) - Part 2-4: Environment - Compatibility levels in industrial plants for low-frequency conducted disturbances                                                   |
| General      | IEC       | 61000-2-9       | Electromagnetic compatibility (EMC) - Part 2: Environment - Section 9:<br>Description of HEMP environment - Radiated disturbance. Basic EMC<br>publication                                         |
| General      | IEC       | 61000-5-5       | Electromagnetic compatibility (EMC) - Part 5: Installation and mitigation guidelines - Section 5: Specification of protective devices for HEMP conducted disturbance. Basic EMC Publication        |

| Category | Publisher | Number        | Title                                                                                                                                                                                                                               |
|----------|-----------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General  | IEC       | 61000-5-7     | Electromagnetic compatibility (EMC) - Part 5-7: Installation and mitigation guidelines - Degrees of protection provided by enclosures against electromagnetic disturbances (EM code)                                                |
| General  | IEC       | 61000-5-8     | Electromagnetic compatibility (EMC) - Part 5-8: Installation and mitigation guidelines - HEMP protection methods for the distributed infrastructure                                                                                 |
| General  | IEC       | 61000-5-9     | Electromagnetic compatibility (EMC) - Part 5-9: Installation and mitigation guidelines - System-level susceptibility assessments for HEMP and HPEM                                                                                  |
| General  | IEC       | 62305-1       | Protection against lightning - Part 1: General principles                                                                                                                                                                           |
| General  | IEC       | 62305-2       | Protection against lightning - Part 2: Risk management                                                                                                                                                                              |
| General  | IEC       | 62305-3       | Protection against lightning - Part 3: Physical damage to structures and life hazard                                                                                                                                                |
| General  | IEC       | 62305-4       | Protection against lightning - Part 4: Electrical and electronic systems within structures                                                                                                                                          |
| General  | IEC       | TR 61000-1-1  | Electromagnetic compatibility (EMC) - Part 1: General - Section 1: Application and interpretation of fundamental definitions and terms                                                                                              |
| General  | IEC       | TR 61000-1-3  | Electromagnetic compatibility (EMC) - Part 1-3: General - The effects of high-<br>altitude EMP (HEMP) on civil equipment and systems                                                                                                |
| General  | IEC       | TR 61000-1-4  | Electromagnetic compatibility (EMC) - Part 1-4: General - Historical rationale for the limitation of power-frequency conducted harmonic current emissions from equipment, in the frequency range up to 2 kHz                        |
| General  | IEC       | TR 61000-1-5  | Electromagnetic compatibility (EMC) - Part 1-5: General - High power electromagnetic (HPEM) effects on civil systems                                                                                                                |
| General  | IEC       | TR 61000-1-6  | Electromagnetic compatibility (EMC) - Part 1-6: General - Guide to the assessment of measurement uncertainty                                                                                                                        |
| General  | IEC       | TR 61000-1-7  | Electromagnetic compatibility (EMC) - Part 1-7: General - Power factor in single-phase systems under non-sinusoidal conditions                                                                                                      |
| General  | IEC       | TR 61000-2-1  | Electromagnetic compatibility (EMC) - Part 2: Environment - Section 1:<br>Description of the environment - Electromagnetic environment for low-<br>frequency conducted disturbances and signaling in public power supply<br>systems |
| General  | IEC       | TR 61000-2-14 | Electromagnetic compatibility (EMC) - Part 2-14: Environment - Overvoltages<br>on public electricity distribution networks                                                                                                          |
| General  | IEC       | TR 61000-2-3  | Electromagnetic compatibility (EMC) - Part 2: Environment - Section 3:<br>Description of the environment - Radiated and non network-frequency-related<br>conducted phenomena                                                        |
| General  | IEC       | TR 61000-2-5  | Electromagnetic compatibility (EMC) - Part 2: Environment - Section 5:<br>Classification of electromagnetic environments. Basic EMC publication                                                                                     |
| General  | IEC       | TR 61000-2-6  | Electromagnetic compatibility (EMC) - Part 2: Environment - Section 6:<br>Assessment of the emission levels in the power supply of industrial plants as<br>regards low-frequency conducted disturbances                             |
| General  | IEC       | TR 61000-2-8  | Electromagnetic compatibility (EMC) - Part 2-8: Environment - Voltage dips<br>and short interruptions on public electric power supply systems with statistical<br>measurement results                                               |
| General  | IEC       | TR 61000-5-1  | Electromagnetic compatibility (EMC) - Part 5: Installation and mitigation guidelines - Section 1: General considerations - Basic EMC publication                                                                                    |
| General  | IEC       | TR 61000-5-2  | Electromagnetic compatibility (EMC) - Part 5: Installation and mitigation guidelines - Section 1: General considerations - Basic EMC publication                                                                                    |
| General  | IEC       | TR 61000-5-3  | Electromagnetic compatibility (EMC) - Part 5-3: Installation and mitigation guidelines - HEMP protection concepts                                                                                                                   |

| Category | Publisher | Number       | Title                                                                                                                                                                                                                     |
|----------|-----------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General  | IEC       | TR 61000-5-6 | Electromagnetic compatibility (EMC) - Part 5-6: Installation and mitigation guidelines - Mitigation of external EM influences                                                                                             |
| General  | IEC       | TR-61000-2-7 | Electromagnetic compatibility (EMC) - Part 2: Environment - Section 7: Low frequency magnetic fields in various environments                                                                                              |
| General  | IEC       | TS 61000-5-4 | Electromagnetic compatibility (EMC) - Part 5: Installation and mitigation<br>guidelines - Section 4: Immunity to HEMP - Specifications for protective<br>devices against HEMP radiated disturbance. Basic EMC Publication |
| Generic  | IEC       | 61000-6-1    | Electromagnetic compatibility (EMC) - Part 6-1: Generic standards - Immunity standard for residential, commercial and light-industrial environments                                                                       |
| Generic  | IEC       | 61000-6-2    | Electromagnetic compatibility (EMC) - Part 6-2: Generic standards - Immunity standard for industrial environments                                                                                                         |
| Generic  | IEC       | 61000-6-3    | Electromagnetic compatibility (EMC) - Part 6-3: Generic standards - Emission standard for residential, commercial and light-industrial environments                                                                       |
| Generic  | IEC       | 61000-6-4    | Electromagnetic compatibility (EMC) - Part 6-4: Generic standards - Emission standard for industrial environments                                                                                                         |
| Generic  | IEC       | 61000-6-5    | Electromagnetic compatibility (EMC) - Part 6-5: Generic standards - Immunity for power station and substation environments                                                                                                |
| Generic  | IEC       | 61000-6-6    | Electromagnetic compatibility (EMC) - Part 6-6: Generic standards - HEMP immunity for indoor equipment                                                                                                                    |
| Generic  | IEC       | 61000-6-7    | Electromagnetic compatibility (EMC) - Part 6-7: Generic standards - Immunity requirements for equipment intended to perform functions in a safety-related system (functional safety) in industrial locations              |
| Medical  | IEC       | 60601-1-1    | Safety requirements for medical electrical systems                                                                                                                                                                        |
| Medical  | IEC       | 60601-1-10   | Requirements for the development of physiologic closed-loop controllers                                                                                                                                                   |
| Medical  | IEC       | 60601-1-11   | Medical electrical equipment and medical electrical systems used in the home healthcare environment                                                                                                                       |
| Medical  | IEC       | 60601-1-12   | Medical electrical equipment and medical electrical systems used in the medical services environment                                                                                                                      |
| Medical  | IEC       | 60601-1-2    | Medical electrical equipment–Part 1-2: General requirements for basic safety and essential performance - Collateral Standard: Electromagnetic disturbances - Requirements and tests                                       |
| Medical  | IEC       | 60601-1-3    | Radiation protection in diagnostic x-ray equipment                                                                                                                                                                        |
| Medical  | IEC       | 60601-1-6    | General requirements for basic safety and essential performance – Usability                                                                                                                                               |
| Medical  | IEC       | 60601-1-8    | General requirements for basic safety and essential performance - Alarm systems                                                                                                                                           |
| Medical  | IEC       | 60601-1-9    | Requirements for environmentally conscious design                                                                                                                                                                         |
| Medical  | IEC       | 60601-2-2    | Medical electrical equipment–Part 2-2: Particular requirements for the basic safety and essential performance of high frequency surgical equipment and high frequency surgical accessories                                |
| Medical  | IEC       | 60601-4-2    | Medical electrical equipment–Part 4-2: Guidance and interpretation -<br>Electromagnetic immunity: performance of medical electrical equipment and<br>medical electrical systems                                           |
| Medical  | IEC       | TR 60601-4-2 | Electromagnetic immunity performance                                                                                                                                                                                      |
| Medical  | IEC       | TR 60601-4-3 | Considerations of unaddressed safety aspects in the third edition of IEC 60601-1                                                                                                                                          |
| Medical  | IEC       | TR 62354     | General testing procedures for medical electrical equipment                                                                                                                                                               |
| Medical  | ISO       | 14708-1      | Active implantable medical devices                                                                                                                                                                                        |
|          |           |              |                                                                                                                                                                                                                           |

| Category | Publisher | Number          | Title                                                                                                                                                                                          |
|----------|-----------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MIL/Aero | AIAA      | S-121           | Electromagnetic Compatibility Requirements for Space Equipment and Systems, 2017                                                                                                               |
| MIL/Aero | DoD       | ADS-37A-PRF     | Electromagnetic Environmental Effects (E3) Performance and Verification Requirements, 28 May 1996 (Army Aviation and Troop Command)                                                            |
| MIL/Aero | DoD       | DoDD 4650.01    | Policy and Procedures for Management and Use of the Electromagnetic Spectrum, 09 Jan 2009                                                                                                      |
| MIL/Aero | DoD       | DoDI 3222.03    | DoD Electromagnetic Environmental Effects (E3) Program, Change Notice 2, 10 October 2017.                                                                                                      |
| MIL/Aero | DoD       | DoDI 6055.11    | Protecting Personnel from Electromagnetic Fields, 19 Aug 2009                                                                                                                                  |
| MIL/Aero | DoD       | DOD-STD-1399-70 | Section 070 Part 1 D.C. Magnetic Field Environment, (Notice 1 Validation, 30 Nov 1989)                                                                                                         |
| MIL/Aero | DoD       | MIL-HDBK-1195   | Radio Frequency Shielded Enclosures, 30 Sep 1988                                                                                                                                               |
| MIL/Aero | DoD       | MIL-HDBK-1857   | Grounding, Bonding and Shielding Design Practices, 27 Mar 1998                                                                                                                                 |
| MIL/Aero | DoD       | MIL-HDBK-2036   | Preparation of Electronic Equipment Specifications, 1 November 1999                                                                                                                            |
| MIL/Aero | DoD       | MIL-HDBK-235-1D | Military Operational Electromagnetic Environment Profiles Part 1D General Guidance, 03 April 2018                                                                                              |
| MIL/Aero | DoD       | MIL-HDBK-237D   | Electromagnetic Environmental Effects and Spectrum Certification Guidance for the Acquisition Process, 20 May 2005. (Notice 1 Validation 04 April 2013)                                        |
| MIL/Aero | DoD       | MIL-HDBK-240-1  | Electromagnetic Environmental Effects to Ordnance Guide Part 1 General Guidance                                                                                                                |
| MIL/Aero | DoD       | MIL-HDBK-240-2  | Electromagnetic Environmental Effects to Ordnance Guide Part 2 Hazards of<br>Electromagnetic Radiation to Ordnance testing                                                                     |
| MIL/Aero | DoD       | MIL-HDBK-240-3  | Electromagnetic Environmental Effects to Ordnance Guide Part 3<br>Electrostatic Discharge to Ordnance                                                                                          |
| MIL/Aero | DoD       | MIL-HDBK-240-4  | Electromagnetic Environmental Effects to Ordnance Guide Part 4 External Radio Frequency Electromagnetic Environments                                                                           |
| MIL/Aero | DoD       | MIL-HDBK-240-5  | Electromagnetic Environmental Effects to Ordnance Guide Part 5 Lightning Effects to Ordnance (Notice 1 is administrative placeholder)                                                          |
| MIL/Aero | DoD       | MIL-HDBK-240-6  | Electromagnetic Environmental Effects to Ordnance Guide Part 6<br>Characterization of the Electromagnetic Environment for HERO                                                                 |
| MIL/Aero | DoD       | MIL-HDBK-240-7  | Electromagnetic Environmental Effects to Ordnance Test Guide Part 7<br>Hazards of Electromagnetic Radiation to Ordnance Operational Guidance                                                   |
| MIL/Aero | DoD       | MIL-HDBK-274A   | Electrical Grounding for Aircraft Safety, 14 Nov 2011. (Notice 2 Validation 20 May 2021)                                                                                                       |
| MIL/Aero | DoD       | MIL-HDBK-335    | Management and Design Guidance Electromagnetic Radiation Hardness<br>for Air Launched Ordnance Systems, Notice 4, 08 Jul 2008. (Notice 5<br>Cancellation 01 August 2013)                       |
| MIL/Aero | DoD       | MIL-HDBK-419A   | Grounding, Bonding, and Shielding for Electronic Equipment and Facilities, 29 Dec 1987. (Notice 1 Validation 20 February 2014)                                                                 |
| MIL/Aero | DoD       | MIL-HDBK-454C   | General Guidelines for Electronic Equipment                                                                                                                                                    |
| MIL/Aero | DoD       | MIL-STD-1275E   | Characteristics of 28 Volt DC Power Input to Utilization Equipment in Military Vehicles, 22 March 2013                                                                                         |
| MIL/Aero | DoD       | MIL-STD-1310H   | Shipboard Bonding, Grounding, and Other Techniques foe Electromagnetic Compatibility, Electeomagnetic Pulse (EMP) Mitigation, and Safety, 17 Sep 2009 (Notice 1 Validation 12 Aug 2014)        |
| MIL/Aero | DoD       | MIL-STD-1377    | Effectiveness of Cable, Connector, and Weapon Enclosure Shielding and Filters in Precluding Hazards of EM Radiation to Ordnance; Measurement of, 20 Aug 1971 (Notice 1 Validation 19 Jan 2021) |

| ITEM |
|------|
|------|

| Category | Publisher | Number                 | Title                                                                                                                                             |
|----------|-----------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| MIL/Aero | DoD       | MIL-<br>STD-1399-300-1 | Department of Defense Interface Standard Sectio 300, Part 1 Low Voltage Electric Power, Alternating Current                                       |
| MIL/Aero | DoD       | MIL-<br>STD-1399-300-2 | Department of Defense Interface Standard Sectio 300, Part 2 Medium Voltage Electric Power, Alternating Current                                    |
| MIL/Aero | DoD       | MIL-STD-1542B          | Electromagnetic Compatibility and Grounding Requirements for Space System Facilities, 15 Nov 1991                                                 |
| MIL/Aero | DoD       | MIL-STD-1605A          | Procedures for Conducting a Shipboard Electromagnetic Interference (EMI)<br>Survey (Surface Ships), 08 Oct 2009 (Notice 1 Validation 12 Aug 2014) |
| MIL/Aero | DoD       | MIL-STD-188-124B       | Grounding, Bonding, and Shielding for Common Long Haul/Tactical<br>Communications-Electronics Facilities and Equipment, 4 April 2013              |
| MIL/Aero | DoD       | MIL-STD-220C           | Test Method Standard Method of Insertion Loss Measurement, 14 May 2009 (Notice 2 Validation 8 Oct 2019)                                           |
| MIL/Aero | DoD       | MIL-STD-331B           | Fuze and Fuze Components, Environmental and Performance Tests for, 31 May, 2017                                                                   |
| MIL/Aero | DoD       | MIL-STD-449D           | Radio Frequency Spectrum Characteristics, Measurement of, 22 Feb 1973 (Notice 2 Validation 4 Apr 2013)                                            |
| MIL/Aero | DoD       | MIL-STD-461G           | Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment, 11 Dec 2015                             |
| MIL/Aero | DoD       | MIL-STD-464D           | Electromagnetic Environmental Effects Requirements for Systems, 24 Dec 2020                                                                       |
| MIL/Aero | DoD       | MIL-STD-704F           | Aircraft Electric Power Characteristics, Change Notice 1, 05 December 2016 (Notice 3 Validation 17 Sep 2021).                                     |
| MIL/Aero | DoD       | TOP-01-2-511A          | Protecting Personnel from Electromagnetic Fields, 19 Aug 2009                                                                                     |
| MIL/Aero | DoD       | TOP-01-2-620           | High-Altitude Electromagnetic Pulse (HEMP) Testing, 10 November 2011                                                                              |
| MIL/Aero | DoD       | TOP-01-2-622           | Vertical Electromagnetic Pulse Testing, 11 September 2009                                                                                         |
| MIL/Aero | RTCA      | DO-160G                | Environmental Conditions and Test Procedures for Airborne Equipment (Change 1)                                                                    |
| MIL/Aero | RTCA      | DO-233                 | Portable Electronic Devices Carried on Board Aircraft                                                                                             |
| MIL/Aero | RTCA      | DO-235B                | Assessment of Radio Frequency Interference Relevant to the GNSS L1 Frequency Band                                                                 |
| MIL/Aero | RTCA      | DO-292                 | Assessment of Radio Frequency Interference Relevant to the GNSS L5/E5A Frequency Band                                                             |
| MIL/Aero | RTCA      | DO-294C                | Guidance on Allowing Transmitting Portable Electronic Devices (T-PEDs) on Aircraft                                                                |
| MIL/Aero | RTCA      | DO-307A                | Aircraft Design and Certification for Portable Electronic Device (PED) Tolerance                                                                  |
| MIL/Aero | RTCA      | DO-307A                | Aircraft Design and Certification for Portable Electronic Device (PED) Tolerance                                                                  |
| MIL/Aero | RTCA      | DO-357                 | User Guide Supplement to DO-160                                                                                                                   |
| MIL/Aero | RTCA      | DO-363                 | Guidance for the Development of Portable Electronic Devices (PED)<br>Tolerance for Civil Aircraft                                                 |
| MIL/Aero | RTCA      | DO-364                 | Minimum Aviation System Performance Standards (MASPS) for Aeronautical Information/ Meteorological Data Link Services                             |
| MIL/Aero | SAE       | ARP 5583A              | Guide to Certification of Aircraft in a High Intensity Radiation (HIRF) Environment                                                               |
| MIL/Aero | SMC       | SMC-S-008              | Electromagnetic Compatibility Requirements For Space Equipment and Systems, 13 Jun 2008                                                           |

| Ū.       |
|----------|
| 0        |
| Ž        |
| 5        |
| õ        |
| Υ        |
|          |
|          |
| Þ.       |
|          |
| <u> </u> |
| U        |
| S        |
| - H      |
| D        |
| Š        |
|          |
|          |

| Category | Publisher | Number     | Title                                                                                                                                                                                                                                                                   |
|----------|-----------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test     | ANSI      | C63.4      | Methods of Measurement of Radio-Noise Emissions from Low-Voltage<br>Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz                                                                                                                                 |
| Test     | IEC       | 60060-1    | International Electrotechnical Vocabulary. Chapter 161: Electromagnetic compatibility                                                                                                                                                                                   |
| Test     | IEC       | 60060-2    | High-voltage test techniques - Part 2: Measuring systems                                                                                                                                                                                                                |
| Test     | IEC       | 60060-3    | High-voltage test techniques - Part 3: Definitions and requirements for on-site testing                                                                                                                                                                                 |
| Test     | IEC       | 61000-4-10 | Electromagnetic compatibility (EMC) - Part 4-10: Testing and measurement techniques - Damped oscillatory magnetic field immunity test                                                                                                                                   |
| Test     | IEC       | 61000-4-11 | Electromagnetic compatibility (EMC) - Part 4-11: Testing and measurement techniques - Voltage dips, short interruptions and voltage variations immunity tests                                                                                                           |
| Test     | IEC       | 61000-4-12 | Electromagnetic compatibility (EMC) - Part 4-12: Testing and measurement techniques - Ring wave immunity test                                                                                                                                                           |
| Test     | IEC       | 61000-4-13 | Electromagnetic compatibility (EMC) - Part 4-13: Testing and measurement techniques - Harmonics and interharmonics including mains signaling at a.c. power port, low frequency immunity tests                                                                           |
| Test     | IEC       | 61000-4-14 | Electromagnetic compatibility (EMC) - Part 4-14: Testing and measurement techniques - Voltage fluctuation immunity test                                                                                                                                                 |
| Test     | IEC       | 61000-4-15 | Electromagnetic compatibility (EMC) - Part 4: Testing and measurement techniques - Section 15: Flickermeter - Functional and design specifications                                                                                                                      |
| Test     | IEC       | 61000-4-16 | Electromagnetic compatibility (EMC) - Part 4-16: Testing and measurement techniques - Test for immunity to conducted, common mode disturbances in the frequency range 0 Hz to 150 kHz                                                                                   |
| Test     | IEC       | 61000-4-17 | Electromagnetic compatibility (EMC) - Part 4-17: Testing and measurement techniques - Ripple on d.c. input power port immunity test Electromagnetic compatibility (EMC) - Part 4-17: Testing and measurement techniques - Ripple on d.c. input power port immunity test |
| Test     | IEC       | 61000-4-18 | Electromagnetic compatibility (EMC) - Part 4-17: Testing and measurement techniques - Ripple on d.c. input power port immunity test                                                                                                                                     |
| Test     | IEC       | 61000-4-19 | Electromagnetic compatibility (EMC) - Part 4-19: Testing and measurement techniques - Test for immunity to conducted, differential mode disturbances and signalling in the frequency range 2 kHz to 150 kHz at a.c. power ports                                         |
| Test     | IEC       | 61000-4-2  | Electromagnetic compatibility (EMC)–Part 4-2: Testing and measurement techniques - Electrostatic discharge immunity test                                                                                                                                                |
| Test     | IEC       | 61000-4-20 | Electromagnetic compatibility (EMC) - Part 4-20: Testing and measurement techniques - Emission and immunity testing in transverse electromagnetic (TEM) waveguides                                                                                                      |
| Test     | IEC       | 61000-4-21 | Electromagnetic compatibility (EMC) - Part 4-21: Testing and measurement techniques - Reverberation chamber test methods                                                                                                                                                |
| Test     | IEC       | 61000-4-22 | Electromagnetic compatibility (EMC) - Part 4-22: Testing and measurement techniques - Radiated emissions and immunity measurements in fully anechoic rooms (FARs                                                                                                        |
| Test     | IEC       | 61000-4-23 | Electromagnetic compatibility (EMC) - Part 4-23: Testing and measurement techniques - Test methods for protective devices for HEMP and other radiated disturbances                                                                                                      |
| Test     | IEC       | 61000-4-24 | Electromagnetic compatibility (EMC) - Part 4-24: Testing and measurement techniques - Test methods for protective devices for HEMP conducted disturbance                                                                                                                |
| Test     | IEC       | 61000-4-25 | Electromagnetic compatibility (EMC) - Part 4-25: Testing and measurement techniques - HEMP immunity test methods for equipment and systems                                                                                                                              |

| Category | Publisher | Number     | Title                                                                                                                                                                                                                                  |
|----------|-----------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test     | IEC       | 61000-4-27 | Electromagnetic compatibility (EMC) - Part 4-25: Testing and measurement techniques - HEMP immunity test methods for equipment and systems                                                                                             |
| Test     | IEC       | 61000-4-28 | Electromagnetic compatibility (EMC) - Part 4-28: Testing and measurement techniques - Variation of power frequency, immunity test                                                                                                      |
| Test     | IEC       | 61000-4-29 | Electromagnetic compatibility (EMC) - Part 4-29: Testing and measurement techniques - Voltage dips, short interruptions and voltage variations on d.c. input power port immunity tests                                                 |
| Test     | IEC       | 61000-4-3  | Electromagnetic compatibility (EMC)–Part 4-3: Testing and measurement techniques - Radiated, radio-frequency, electromagnetic field immunity test                                                                                      |
| Test     | IEC       | 61000-4-30 | Electromagnetic compatibility (EMC) – Part 4-30: Testing and measurement techniques – Power quality measurement methods                                                                                                                |
| Test     | IEC       | 61000-4-31 | Electromagnetic compatibility (EMC) - Part 4-31: Testing and measurement techniques - AC mains ports broadband conducted disturbance immunity test                                                                                     |
| Test     | IEC       | 61000-4-33 | Electromagnetic compatibility (EMC) - Part 4-33: Testing and measurement techniques - Measurement methods for highpower transient parameters                                                                                           |
| Test     | IEC       | 61000-4-34 | Electromagnetic compatibility (EMC) - Part 4-33: Testing and measurement techniques - Measurement methods for highpower transient parameters                                                                                           |
| Test     | IEC       | 61000-4-36 | Electromagnetic compatibility (EMC) - Part 4-36: Testing and measurement techniques - IEMI immunity test methods for equipment and systems                                                                                             |
| Test     | IEC       | 61000-4-4  | Electromagnetic compatibility (EMC)–Part 4-4: Testing and measurement techniques – Electrical fast transient/burst immunity test                                                                                                       |
| Test     | IEC       | 61000-4-5  | Electromagnetic compatibility (EMC) - Part 4-5: Testing and measurement techniques - Surge immunity test                                                                                                                               |
| Test     | IEC       | 61000-4-6  | Electromagnetic compatibility (EMC) - Part 4-6: Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields                                                                             |
| Test     | IEC       | 61000-4-7  | Electromagnetic compatibility (EMC) - Part 4-7: Testing and measurement techniques - General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto          |
| Test     | IEC       | 61000-4-8  | Electromagnetic compatibility (EMC) - Part 4-8: Testing and measurement techniques - Power frequency magnetic field immunity test                                                                                                      |
| Test     | IEC       | 61000-4-9  | Electromagnetic compatibility (EMC) - Part 4-9: Testing and measurement techniques - Impulse magnetic field immunity test                                                                                                              |
| Test     | IEC       | 61340-3-1  | Electrostatics - Part 3-1: Methods for simulation of electrostatic effects -<br>Human body model (HBM) electrostatic discharge test waveforms                                                                                          |
| Test     | IEC       | 62153-10   | Metallic communication cable test methods - Part 4-10: Electromagnetic compatibility (EMC) - Transfer impedance and screening attenuation of feed-throughs and electromagnetic gaskets - Double coaxial test method                    |
| Test     | IEC       | 62153-11   | Metallic communication cable test methods - Part 4-11: Electromagnetic compatibility (EMC) - Coupling attenuation or screening attenuation of patch cords, coaxial cable assemblies, pre-connectorized cables - Absorbing clamp method |
| Test     | IEC       | 62153-12   | Metallic communication cable test methods - Part 4-12: Electromagnetic compatibility (EMC) - Coupling attenuation or screening attenuation of connecting hardware - Absorbing clamp method                                             |
| Test     | IEC       | 62153-13   | Metallic communication cable test methods - Part 4-13: Electromagnetic compatibility (EMC) - Coupling attenuation of links and channels (laboratory conditions) - Absorbing clamp method                                               |

CONSOLIDATED STDS

ITEM

|           | as up to and above 3 GHz, triaxial method                                                                                                                                                                                                                                                |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 62153-4-5 | Metallic communication cables test methods - Part 4-5: Electromagnetic compatibility (EMC) - Coupling or screening attenuation - Absorbing clamp method                                                                                                                                  |
| 62153-4-6 | Metallic communication cable test methods - Part 4-6: Electromagnetic compatibility (EMC) - Surface transfer impedance - Line injection method                                                                                                                                           |
| 62153-4-7 | Metallic communication cable test methods - Part 4-7: Electromagnetic compatibility (EMC) - Test method for measuring of transfer impedance ZT and screening attenuation aS or coupling attenuation aC of connectors and assemblies up to and above 3 GHz - Triaxial tube in tube method |
| 62153-4-8 | Metallic communication cable test methods - Part 4-8: Electromagnetic compatibility (EMC) - Capacitive coupling admittance                                                                                                                                                               |
| 62153-4-9 | Metallic communication cable test methods - Part 4-9: Electromagnetic compatibility (EMC) - Coupling attenuation of screened balanced cables,                                                                                                                                            |

measurements

method

|      |     |              | contraction (manual contraction of the second contraction of the secon |
|------|-----|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test | IEC | 62153-4-9    | Metallic communication cable test methods - Part 4-9: Electromagnetic compatibility (EMC) - Coupling attenuation of screened balanced cables, triaxial method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test | IEC | CISPR 16-1-1 | Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-1: Radio disturbance and immunity measuring apparatus - Measuring apparatus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Test | IEC | CISPR 16-1-2 | Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-2: Radio disturbance and immunity measuring apparatus - Coupling devices for conducted disturbance measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test | IEC | CISPR 16-1-3 | Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-3: Radio disturbance and immunity measuring apparatus - Ancillary equipment - Disturbance power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test | IEC | CISPR 16-1-4 | Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-4: Radio disturbance and immunity measuring apparatus - Antennas and test sites for radiated disturbance measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test | IEC | CISPR 16-1-5 | Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-5: Radio disturbance and immunity measuring apparatus - Antenna calibration sites and reference test sites for 5 MHz to 18 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

CISPR 16-1-6

Number

62153-14

62153-15

62153-4

62153-4-1

62153-4-2

62153-4-3

62153-4-4

Category

Test

Publisher

IEC

Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-6: Radio disturbance and immunity measuring apparatus - EMC antenna calibration

Metallic communication cable test methods - Part 4-14: Electromagnetic

Metallic communication cable test methods - Part 4-15: Electromagnetic

compatibility (EMC) - Test method for measuring transfer impedance and

Metallic communication cable test methods - Part 4-0: Electromagnetic

Metallic communication cable test methods - Part 4-1: Electromagnetic

Metallic communication cable test methods - Part 4-2: Electromagnetic

Metallic communication cable test methods - Part 4-3: Electromagnetic

compatibility (EMC) - Surface transfer impedance - Triaxial method Metallic communication cable test methods - Part 4-4: Electromagnetic compatibility (EMC) - Test method for measuring of the screening attenuation

compatibility (EMC) - Screening and coupling attenuation - Injection clamp

compatibility (EMC) - Relationship between surface transfer impedance and

screening attenuation - or coupling attenuation with triaxial cell

compatibility (EMC) - Introduction to electromagnetic screening

compatibility (EMC) - Coupling attenuation of cable assemblies (Field

conditions) absorbing clamp method

screening attenuation, recommended limits

Test

| Oategory |     |                 | The                                                                                                                                                                                                                                                 |
|----------|-----|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test     | IEC | CISPR 16-2-1    | Specification for radio disturbance and immunity measuring apparatus and methods - Part 2-1: Methods of measurement of disturbances and immunity - Conducted disturbance measurements                                                               |
| Test     | IEC | CISPR 16-2-2    | Specification for radio disturbance and immunity measuring apparatus and methods - Part 2-2: Methods of measurement of disturbances and immunity - Measurement of disturbance power                                                                 |
| Test     | IEC | CISPR 16-2-3    | Specification for radio disturbance and immunity measuring apparatus and methods - Part 2-3: Methods of measurement of disturbances and immunity - Radiated disturbance measurements                                                                |
| Test     | IEC | CISPR 16-2-4    | Specification for radio disturbance and immunity measuring apparatus and methods - Part 2-4: Methods of measurement of disturbances and immunity - Immunity measurements                                                                            |
| Test     | IEC | CISPR 16-4-2    | Specification for radio disturbance and immunity measuring apparatus and methods - Part 4-2: Uncertainties, statistics and limit modeling - Measurement instrumentation uncertainty                                                                 |
| Test     | IEC | CISPR 17        | Methods of measurement of the suppression characteristics of passive EMC filtering devices                                                                                                                                                          |
| Test     | IEC | CISPR TR 16-2-5 | Specification for radio disturbance and immunity measuring apparatus and methods - Part 2-5: In situ measurements for disturbing emissions produced by physically large equipment                                                                   |
| Test     | IEC | CISPR TR 16-3   | Specification for radio disturbance and immunity measuring apparatus and methods - Part 3: CISPR technical reports                                                                                                                                  |
| Test     | IEC | CISPR TR 16-4-1 | Specification for radio disturbance and immunity measuring apparatus and methods - Part 4-1: Uncertainties, statistics and limit modeling - Uncertainties in standardized EMC tests                                                                 |
| Test     | IEC | CISPR TR 16-4-3 | Specification for radio disturbance and immunity measuring apparatus and methods - Part 4-3: Uncertainties, statistics and limit modeling - Statistical considerations in the determination of EMC compliance of mass-produced products             |
| Test     | IEC | CISPR TR 16-4-4 | Specification for radio disturbance and immunity measuring apparatus and methods - Part 4-4: Uncertainties, statistics and limit modeling - Statistics of complaints and a model for the calculation of limits for the protection of radio services |
| Test     | IEC | CISPR TR 16-4-5 | Specification for radio disturbance and immunity measuring apparatus and methods - Part 4-5: Uncertainties, statistics and limit modeling - Conditions for the use of alternative test methods                                                      |
| Test     | IEC | CISPR TR 18-1   | Radio interference characteristics of overhead power lines and high-voltage equipment - Part 1: Description of phenomena                                                                                                                            |
| Test     | IEC | CISPR TR 18-2   | Radio interference characteristics of overhead power lines and high-voltage equipment - Part 2: Methods of measurement and procedure for determining limits                                                                                         |
| Test     | IEC | CISPR TR 18-3   | Radio interference characteristics of overhead power lines and high-voltage equipment - Part 3: Code of practice for minimizing the generation of radio noise                                                                                       |
| Test     | IEC | TR 61000-4-32   | Electromagnetic compatibility (EMC) - Part 4-32: Testing and measurement techniques - High-altitude electromagnetic pulse (HEMP) simulator compendium                                                                                               |
| Test     | IEC | TR 61000-4-35   | Electromagnetic compatibility (EMC) - Part 4-35: Testing and measurement techniques - HPEM simulator compendium                                                                                                                                     |
| Test     | IEC | TR 61000-4-37   | Electromagnetic compatibility (EMC) - Part 4-36: Testing and measurement techniques - IEMI immunity test methods for equipment and systems                                                                                                          |
|          |     |                 |                                                                                                                                                                                                                                                     |

Category

| Category | Publisher | Number        | Title                                                                                                                                                                                                                                                             |
|----------|-----------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test     | IEC       | TR 61000-4-38 | Electromagnetic compatibility (EMC) - Part 4-38: Testing and measurement techniques - Test, verification and calibration protocol for voltage fluctuation and flicker compliance test systems                                                                     |
| Test     | IEC       | TS 60816      | Guide on methods of measurement of short duration transients on low-voltage power and signal lines                                                                                                                                                                |
| Wireless | ETSI EN   | 300 220       | Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices (SRD); Radio equipment to be used in the 25MHz to 1000MHz frequency range with power levels ranging up to 500mW                                                               |
| Wireless | ETSI EN   | 300 328       | Electromagnetic compatibility and Radio Spectrum Matters (ERM); Wideband transmission systems; Data transmission equipment operating in the 2.4 GHz ISM band and using wide band modulation techniques; Harmonized EN covering essential requirements             |
| Wireless | ETSI EN   | 300 330       | Electromagnetic compatibility and Radio spectrum Matters (ERM); Short<br>Range Devices (SRD); Radio equipment to be used in the 9kHz to 25MHz<br>frequency range and inductive loop systems in the 9kHz to 30MHz frequency<br>range                               |
| Wireless | ETSI EN   | 300 440       | Electromagnetic compatibility and Radio spectrum Matters (ERM); Short<br>Range Devices (SRD); Radio equipment to be used in the 1GHz to 40GHz<br>frequency range                                                                                                  |
| Wireless | ETSI EN   | 301 489-17    | Electromagnetic compatibility and Radio spectrum Matters (ERM);<br>Electromagnetic Compatibility (EMC) standard for radio equipment and<br>services; Part 17: Specific conditions for Wideband data and HIPERLAN<br>equipment                                     |
| Wireless | ETSI EN   | 301 489-3     | Electromagnetic compatibility and Radio spectrum Matters (ERM);<br>Electromagnetic Compatibility (EMC) standard for radio equipment and<br>services; Part 3: Specific conditions for Short Range Devices (SRD) operating<br>on frequencies between 9kHz and 40GHz |
| Wireless | ETSI EN   | 301 893       | Broadband Radio Access Networks (BRAN); 5 GHz high performance RLAN;<br>Harmonized EN covering essential requirements                                                                                                                                             |
| Wireless | ETSI EN   | 303 413       | GPS receivers                                                                                                                                                                                                                                                     |
| Wireless | ETSI EN   | 303 417       | Wireless Power Transfer                                                                                                                                                                                                                                           |

# **EMC STANDARDS ORGANIZATIONS**

American National Standards Institute (ANSI) www.ansi.org

ANSI Accredited C63 www.c63.org

Asia Pacific Laboratory Accreditation Cooperation (APLAC) https://www.apac-accreditation.org/

Bureau of Standards, Metrology and Inspection (BSMI) http://www.bsmi.gov.tw/wSite/mp?mp=95

Canadian Standards Association (CSA)

Comité International Spécial des Perturbations Radioélectriques (CISPR) http://www.iec.ch/dyn/www/f?p=103:7:0::::FSP\_ORG\_ID,FSP\_LANG\_ ID:1298,25

China – Certification and Accreditation Administration (CNCA) http://www.cnca.gov.cn/

FDA Center for Devices & Radiological Health (CDRH) https://www.fda.gov/MedicalDevices/default.htm

Federal Communications Commission (FCC) www.fcc.gov

Gosstandart (Russia) https://gosstandart.gov.by/en/ International Electrotechnical Commission (IEC) http://www.iec.ch

Institute of Electrical and Electronics Engineers (IEEE) Standards Association https://standards.ieee.org/

IEEE EMC Society Standards Development Committee (SDCOM) https://standards.ieee.org/develop/index.html

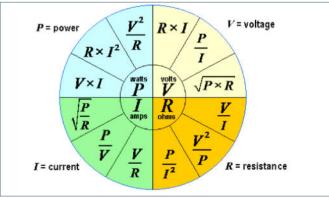
Industry Canada (Certifications and Standards) http://www.ic.gc.ca/eic/site/smt-gst.nsf/eng/h\_sf06165.html

**ISO** (International Organization for Standards) http://www.iso.org/iso/home.html

Radio Technical Commission for Aeronautics (RTCA) https://www.rtca.org

Society of Automotive Engineers (SAE) EMC Standards Committee

SAE EMC Standards http://www.sae.org/servlets/works/committeeHome.do?comtID=TEVEES17


Japan – Voluntary Control Council for Interference (VCCI) http://www.vcci.jp/vcci\_e/



# **REFERENCES & TOOLS**

## **COMMON EMC-RELATED EQUATIONS**

## **OHMS LAW**



Ohms Law "formula wheel" for calculating resistance (R), voltage (V), current (I) or power (P), given at least two of the other values.

## **BANDWIDTH VERSUS RISE TIME**

$$BW(GHz) = \frac{0.35}{RT(nsec)}$$

Empirically derived and applies for a square wave, with rise time measured at 10 and 90%. Example, for a rise time of 1 nsec, the bandwidth is 350 MHz.

## BANDWIDTH VERSUS CLOCK FREQUENCY

 $BW_{Clock}(GHz) = 5 X F_{Clock}(GHz)$ 

Assuming the rise time of a clock is 7% of the period, we can approximate the bandwidth as shown.

Example, for a clock frequency of 100 MHz, the bandwidth is 500 MHz. That is, the highest significant sine-wave frequency component in a clock wave is the fifth harmonic.

## PERIOD VERSUS FREQUENCY

 $F_{Clock}(GHz) = \frac{1}{T_{Clock}(nsec)}$ 

# PARTIAL SELF-INDUCTANCE OF A ROUND WIRE (1MM)

25 nH/inch or 1 nH/mm

Example, a 1.5 mm long via has a partial self-inductance of about 1.5 nH.

## **IMPEDANCE OF A WIRE**

 $Z_{Wire} (Ohms) = 2\pi f (GHz)L(nH)$ 

Example, a 1-inch wire (25 nH) has an impedance of 16 Ohms at 100 MHz.

## SPEED OF SIGNALS

In air: 11.8 inches/nsec

In most PC board dielectrics: 6 inches/nsec

## **VSWR AND RETURN LOSS**

VSWR given forward/reverse power 
$$VSWR = \frac{1 + \sqrt{\frac{P_{fwd}}{P_{fwd}}}}{1 - \sqrt{\frac{P_{rev}}{P_{fwd}}}}$$

VSWR given reflection coefficient ( $\rho$ )

$$VSWR = \left| \frac{1+\rho}{1-\rho} \right|$$

Pren /

Reflection coefficient ( $\rho$ ), given Z1,Z2 Ohms  $\rho = \begin{vmatrix} Z_1 - Z_2 \\ Z_1 + Z_2 \end{vmatrix}$ 

Reflection coefficient ( $\rho$ ), given fwd/rev power

$$\rho = \sqrt{\frac{P_{rev}}{P_{fwd}}}$$

## RETURN LOSS, GIVEN FORWARD/REVERSE POWER

 $RL(dB) = -10\log(\frac{P_{OUT}}{P_{IN}})$ 

## **RETURN LOSS, GIVEN VSWR**

$$RL(dB) = -20\log(\frac{VSWR - 1}{VSWR + 1})$$

Return Loss, given reflection coefficient (p)

 $RL(dB) = -20\log(\rho)$ 

## **TEMPERATURE CONVERSIONS**

Celsius to Fahrenheit:  $^{\circ}C = 5/9(^{\circ}F - 32)$ Fahrenheit to Celsius:  $^{\circ}F = 9/5(^{\circ}C) + 32$ 

## E-FIELD FROM DIFFERENTIAL-MODE CURRENT

 $\left|E_{D,max}\right| = 2.63 * 10^{-14} \frac{\left|I_D\right| f^2 Ls}{d}$ 

ID = differential-mode current in loop (A)

f = frequency (Hz)

L = length of loop (m)

s = spacing of loop (m)

d = measurement distance (3 m or 10 m, typ.)

(Assumption that the loop is electrically small and measured over a reflecting surface)

## E-FIELD FROM COMMON-MODE CURRENT

 $|E_{C,max}| = 1.257 * 10^{-6} \frac{|I_C|fL}{d}$ 

IC = common-mode current in wire (A)

f = frequency (Hz)

L = length of wire (m)

d = measurement distance (3 m or 10 m, typ.) (Assumption that the wire is electrically short)

## ANTENNA (FAR FIELD) RELATIONSHIPS

Gain, dBi to numeric  $Gain_{numeric} = 10^{dBi/10}$ 

Gain, numeric to dBi  $dBi = 10\log(Gain_{numeric})$ 

Gain, dBi to Antenna Factor  $AF = 20 \log(MHz) - dBi - 29.79$ 

Antenna Factor to gain in dBi  $dBi = 20 \log(MHz) - AF - 29.79$ 

Field Strength given watts, numeric gain, distance in meters

$$V/m = \frac{\sqrt{30 * watts * Gain_{numeric}}}{meters}$$

Field Strength given watts, dBi gain, distance in meters

$$V/m = \frac{\sqrt{30 * watts * 10^{(dBi/10)}}}{meters}$$

## ANTENNA (FAR FIELD) RELATIONSHIPS (continued)

Transmit power required, given desired V/m, antenna numeric gain, distance in meters

 $Watts = \frac{(V/m * meters)^2}{30 * Gain_{numeric}}$ 

Transmit power required, given desired V/m, antenna dBi gain, distance in meters

 $Watts = \frac{(V/m * meters)^2}{30 * 10^{dBi/10}}$ 

## PC BOARD EQUATIONS

1 oz. copper = 1.4 mils = 0.036 mm 0.5 oz. copper = 0.7 mils = 0.018 mm Convert mils to mm: multiply by 0.0254 mm/mil Convert mm to mils: multiply by 39.4 mil/mm Signal velocity in free space: approx. 12 in/ns Signal velocity in FR-4: approx. 6 in/ns

## WORKING WITH DB

<u>The decibel is always a ratio</u> Power Gain = Pout/Pin Power Gain(dB) = 10log(Pout/Pin) Voltage Gain(dB) = 20log(Vout/Vin) Current Gain(dB) = 20log(lout/lin)

We commonly work with:

dBm (referenced to 1 mW) dB $\mu$ V (referenced to 1  $\mu$ V) dB $\mu$ A (referenced to 1  $\mu$ A) Power Ratios 3 dB = double (or half) the power 10 dB = 10X (or /10) the power

## Voltage/Current Ratios

6 dB = double (or half) the voltage/current 20 dB - 10X (or /10) the voltage/current

# **REFERENCES & TOOLS**

## DBM, DBMV, DBMA (CONVERSION)

| dBV = 20log(V)                  |
|---------------------------------|
| dBµV = 20log(V) + 120           |
| $V = 10^{(dBV/20)}$             |
| $V = 10^{((dB\mu V = 120)/20)}$ |
| dBµV = dBV +120                 |
| dBV = dBµV - 120                |
|                                 |

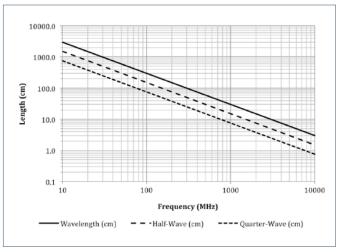
Note: For current relationships, substitute A for V

## FIELD STRENGTH EQUATIONS

|                   | -                                   |
|-------------------|-------------------------------------|
| dBµV/m to V/m:    | $V/m = 10^{(((dB\mu V/m)-120)/20)}$ |
| V/m to dBµV/m:    | dBµV/m = 20log(V/m) + 120           |
| dBµV/m to dBµA/m: | $dB\mu A/m = dB\mu V/m - 51.5$      |
| dBµA/m to dBµV/m: | $dB\mu V/m = dB\mu A/m + 51.5$      |
| dBµA/m to dBpT:   | $dBpT = dB\mu A/m + 2$              |
| dBpT to dBµA/m:   | dBµA/m = dBpT - 2                   |
| μT to A/m:        | A/m = μT/1.25                       |
| A/m to µT:        | μT = 1.25 * A/m                     |
|                   | *                                   |

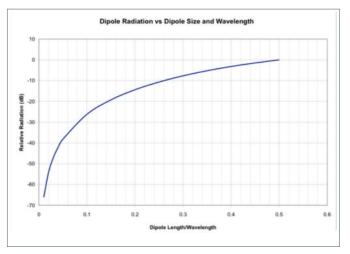
## **DBM TO DBUV CHART**

| dBm  | dBµV |
|------|------|
| 20   | 127  |
| 10   | 117  |
| 0    | 107  |
| -10  | 97   |
| -20  | 87   |
| -30  | 77   |
| -40  | 67   |
| -50  | 57   |
| -60  | 47   |
| -70  | 37   |
| -80  | 27   |
| -90  | 17   |
| -100 | 7    |


A common formula for converting default spectrum analyzer amplitudes (dBm) to the limits as shown in the emissions standards (dB $\mu$ V):

dBm to dB $\mu$ V, use: dB $\mu$ V = dBm + 107

# WAVELENGTH EQUATIONS (FREE SPACE)


Wavelength(m) = 300/f(MHz) Half-wavelength(ft.) = 468/f(MHz)

## **RESONANCE OF STRUCTURES**



Use this handy chart for determining the resonant frequency versus cable or slot length in free space. Half-wavelength slots or cables simulate dipole antennas and are particularly troublesome. Image Source: Patrick André.

## DIPOLE RADIATION VERSUS LENGTH



Use this chart to for determining the relative radiation versus size in wavelength. For example, a wire or slot whose length is 0.2 wavelength at a particular frequency, would radiate about 15 dB down from the equivalent half-wavelength wire or slot. Image Source: Bruce Archambeault.

# **COMMON SYMBOLS**

| Α                  | Amperes, unit of electrical current                                                                                                                        |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AC                 | Alternating Current                                                                                                                                        |
| AM                 | Amplitude modulated                                                                                                                                        |
| dBm                | dB with reference to 1 mW                                                                                                                                  |
| dBµA               | dB with reference to 1 µA                                                                                                                                  |
| dBµV               | dB with reference to 1 $\mu$ V                                                                                                                             |
| DC                 | Direct Current                                                                                                                                             |
| Е                  | "E" is the electric field component of an electromagnetic field.                                                                                           |
| E/M                | Ratio of the electric field (E) to the magnetic field (H), in the far-field this is the characteristic impedance of free space, approximately 377 $\Omega$ |
| EM                 | Electromagnetic                                                                                                                                            |
| EMC                | Electromagnetic compatibility                                                                                                                              |
| EMI                | Electromagnetic Interference                                                                                                                               |
| FM                 | Frequency modulated                                                                                                                                        |
| GHz                | Gigahertz, one billion Hertz (1,000,000,000 Hertz)                                                                                                         |
| н                  | "H" is the magnetic field component of an electromagnetic field.                                                                                           |
| Hz                 | Hertz, unit of measurement for frequency                                                                                                                   |
| I.                 | Electric current                                                                                                                                           |
| kHz                | Kilohertz, one thousand Hertz (1,000 Hertz)                                                                                                                |
| λ                  | Lambda, symbol for wavelength                                                                                                                              |
| MHz                | Megahertz, one million Hertz (1,000,000 Hertz)                                                                                                             |
| mil                | Unit of length, one thousandth of an inch                                                                                                                  |
| mW                 | Milliwatt (0.001 Watt)                                                                                                                                     |
| mW/cm <sup>2</sup> | Milliwatts per square centimeter, a unit for power density                                                                                                 |
| Pd                 | Power density, unit of measurement of power per unit area (W/m <sup>2</sup> or mW/cm <sup>2</sup> )                                                        |
| R                  | Resistance                                                                                                                                                 |
| RF                 | Radio Frequency                                                                                                                                            |
| RFI                | Radio Frequency Interference                                                                                                                               |
| V                  | Volts, unit of electric voltage potential                                                                                                                  |
| V/m                | Volts per meter, unit of electric field strength                                                                                                           |
| W/m <sup>2</sup>   | Watts per square meter, a unit for power density, one W/m <sup>2</sup> equals 0.1 mw/cm <sup>2</sup>                                                       |
| Ω                  | Ohms, unit of resistance                                                                                                                                   |
|                    |                                                                                                                                                            |

Ref: ANSI/IEEE 100-1984, IEEE Standard Dictionary of Electrical and Electronics Terms, 1984.

# ACRONYMS

| AF               | (Antenna Factor) - The ratio of the received field strength to the voltage at the terminals of a receiving antenna. Units are 1/m.                                                                                                                                                     |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALC              | (Absorber-Lined Chamber) - A shielded room with RF-absorbing material on the walls and ceiling. In many cases, the floor is reflective.                                                                                                                                                |
| АМ               | (Amplitude Modulation) - A technique for putting information on a sinusoidal carrier signal by varying the amplitude of the carrier.                                                                                                                                                   |
| ANSI             | American National Standards Institute                                                                                                                                                                                                                                                  |
| BCI              | (Bulk Current Injection) - An EMC test where common-mode currents are coupled onto the power and communications cables of an EUT.                                                                                                                                                      |
| BEV              | Battery Electric Vehicle                                                                                                                                                                                                                                                               |
| CE               | (Conducted Emissions) - The RF energy generated by electronic equipment, which is conducted on power cables.                                                                                                                                                                           |
| CE Marking       | The marking signifying a product meets the required European Directives.                                                                                                                                                                                                               |
| CENELEC          | French acronym for the "European Committee for Electrotechnical Standardization".                                                                                                                                                                                                      |
| CI               | (Conducted Immunity) - A measure of the immunity to RF energy coupled onto cables and wires of an electronic product.                                                                                                                                                                  |
| CISPR            | French acronym for "Special International Committee on Radio Interference".                                                                                                                                                                                                            |
| Conducted        | Energy transmitted via cables or PC board connections.                                                                                                                                                                                                                                 |
| Coupling<br>Path | A structure or medium that transmits energy from a noise source to a victim circuit or system.                                                                                                                                                                                         |
| CS               | (Conducted Susceptibility) - RF energy or electrical noise coupled onto I/O cables and power wiring that can disrupt electronic equipment.                                                                                                                                             |
| CW               | (Continuous Wave) - A sinusoidal waveform with a constant amplitude and frequency.                                                                                                                                                                                                     |
| EMC              | (Electromagnetic Compatibility) - The ability of a product to coexist in its intended electromagnetic environment without causing or suffering disruption or damage.                                                                                                                   |
| EMI              | (Electromagnetic Interference) - When electromagnetic energy is transmitted from an electronic device to a victim circuit or system via radiated or conducted paths (or both) and which causes circuit upset in the victim.                                                            |
| EMP              | (Electromagnetic Pulse) - Strong electromagnetic transients such as those created by lightning or nuclear blasts.                                                                                                                                                                      |
| ESD              | (Electrostatic Discharge) - A sudden surge in current (positive or negative) due to an electric spark or secondary discharge causing circuit disruption or component damage. Typically characterized by rise times less than 1 ns and total pulse widths on the order of microseconds. |
| ESL              | (Equivalent Series Inductance) - Generally refers to the parasitic series inductance of a capacitor or inductor. It could also include the extra series inductance of any connecting traces or vias on a PC board.                                                                     |
| ESR              | (Equivalent Series Resistance) - Generally refers to the parasitic series resistance of a capacitor or inductor.                                                                                                                                                                       |
| EU               | European Union.                                                                                                                                                                                                                                                                        |
| EUT              | (Equipment Under Test) - The device being evaluated.                                                                                                                                                                                                                                   |
| Far Field        | When you get far enough from a radiating source the radiated field can be considered planar (or plane waves).                                                                                                                                                                          |
| FCC              | U.S. Federal Communications Commission.                                                                                                                                                                                                                                                |
| FM               | (Frequency Modulation) - A technique for putting information on a sinusoidal "carrier" signal by varying the frequency of the carrier.                                                                                                                                                 |
| HEV              | Hybrid Electric Vehicle                                                                                                                                                                                                                                                                |
| IEC              | International Electrotechnical Commission                                                                                                                                                                                                                                              |

| ISM          | (Industrial, Scientific and Medical equipment) - A class of electronic equipment including industrial controllers, test & measurement equipment, medical products and other scientific equipment.                                                                                                                               |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ITE          | (Information Technology Equipment) - A class of electronic devices covering a broad range of equipment including computers, printers and external peripherals; also includes, telecommunications equipment, and multi-media devices.                                                                                            |
| LISN         | (Line Impedance Stabilization Network) - Used to match the 50-Ohm impedance of measuring receivers to the power line.                                                                                                                                                                                                           |
| MLCC         | (Multi-Layer Ceramic Capacitor) - A surface mount capacitor type often used as decoupling or energy storage capacitors in a power distribution network.                                                                                                                                                                         |
| Near Field   | When you are close enough to a radiating source that its field is considered spherical rather than planar.                                                                                                                                                                                                                      |
| Noise Source | A source that generates an electromagnetic perturbation or disruption to other circuits or systems.                                                                                                                                                                                                                             |
| OATS         | (Open Area Test Site) - An outdoor EMC test site free of reflecting objects except a ground plane.                                                                                                                                                                                                                              |
| PDN          | (Power Distribution Network) - The wiring and circuit traces from the power source to the electronic circuitry. This includes the parasitic components (R, L, C) of the circuit board, traces, bypass capacitance and any series inductances.                                                                                   |
| PHEV         | Plug-in Hybrid Electric Vehicle                                                                                                                                                                                                                                                                                                 |
| PI           | (Power Integrity) - Refers to the quality of the energy transfer along the power supply circuitry from the voltage regulator module (VRM) to the die of the ICs. High switching noise or oscillations mean a low PI.                                                                                                            |
| PLT          | (Power Line Transient) - A sudden positive or negative surge in the voltage on a power supply input (DC source or AC line).                                                                                                                                                                                                     |
| Radiated     | Energy transmitted through the air via antenna or loops.                                                                                                                                                                                                                                                                        |
| RFI          | Radio Frequency Interference) - The disruption of an electronic device or system due to electromagnetic emissions at radio frequencies (usually a few kHz to a few GHz). Also EMI.                                                                                                                                              |
| RE           | (Radiated Emissions) - The energy generated by a circuit or equipment, which is radiated directly from the circuits, chassis and/or cables of equipment.                                                                                                                                                                        |
| RI           | Radiated Immunity) - The ability of circuits or systems to be immune from radiated energy coupled to the chassis, circuit boards and/or cables. Also Radiated Susceptibility (RS).                                                                                                                                              |
| RF           | (Radio Frequency) - A frequency at which electromagnetic radiation of energy is useful for communications.                                                                                                                                                                                                                      |
| RS           | (Radiated Susceptibility) - The ability of equipment or circuits to withstand or reject nearby radiated RF sources. Also Radiated Immunity (RI).                                                                                                                                                                                |
| SAR          | (Specific Absorption Rate) Measure of the rate of RF energy absorbed by the body.                                                                                                                                                                                                                                               |
| SSCG         | Spread Spectrum Clock Generation) - This technique takes the energy from a CW clock signal and spreads it out wider, which results in a lower effective amplitude for the fundamental and high-order harmonics. Used to achieve improved radiated or conducted emission margin to the limits.                                   |
| SI           | (Signal Integrity) - A set of measures of the quality of an electrical signal.                                                                                                                                                                                                                                                  |
| SSN          | (Simultaneous Switching Noise) - Fast pulses that occur on the power bus due to switching transient currents drawn by the digital circuitry.                                                                                                                                                                                    |
| TEM          | (Transverse Electromagnetic) - An electromagnetic plane wave where the electric and magnetic fields are perpendicular to each other everywhere and both fields are perpendicular to the direction of propagation. TEM cells are often used to generate TEM waves for radiated emissions (RE) or radiated immunity (RI) testing. |
| Victim       | An electronic device, component or system that receives an electromagnetic disturbance, which causes circuit upset.                                                                                                                                                                                                             |
| VRM          | (Voltage Regulator Module) - A linear or switch-mode voltage regulator. Generally, there will be several of these mounted to a PC board in order to supply different levels of required voltages.                                                                                                                               |
| VSWR         | (Voltage Standing Wave Ratio) - A measure of how well the load is impedance matched to its transmission line. This is calculated by dividing the voltage at the peak of a standing wave by the voltage at the null in the standing wave. A good match is less than 1.2:1.                                                       |
| XTALK        | (Crosstalk) - A measure of the electromagnetic coupling from one circuit to another. This is a common problem between one circuit trace and another.                                                                                                                                                                            |

# RECOMMENDED EMC BOOKS, MAGAZINES AND JOURNALS

## 2024 EMC Fundamentals Guide

The Fundamentals Guide and keep your project running smoothly by better understanding how to address EMI and EMC in the early design phases.

https://learn.interferencetechnology.com/2024-emc-fundamentals-guide

## 2023 EMC Testing Guide

This guide offers insights and tools needed to plan for and prevent EMC failures before even entering the testing lab. https://learn.interferencetechnology.com/2023-emc-testing-guide/

## 2023 IoT, Wireless, 5G EMC Guide

This guide includes content and reference material focused on providing the information required for designing and testing EMI-free wireless devices.

https://learn.interferencetechnology.com/2023-iot-wireless-5g-emc-guide/

## 2023 Military & Aerospace EMC Guide

This guide provides up-to-date information on a range of mil/ aero technologies and EMC standards like MIL-STD-461G and DO-160, ensuring cost-effective design and testing.

https://learn.interferencetechnology.com/2023-military-and-aerospace-emc-guide/

## 2021 Automotive EMC Guide

This guide features technical articles, reference materials, and a company directory focused on the EMI challenges that result from today's complex connected automotive systems. https://learn.interferencetechnology.com/2021-automotive-emc-guide/

#### André and Wyatt,

## EMI Troubleshooting Cookbook for Product Designers SciTech Publishing, 2014. Includes chapters on product design and EMC theory & measurement. A major part of the content includes how to troubleshoot and mitigate all common EMC test failures.

#### Archambeault,

PCB Design for Real-World EMI Control Kluwer Academic Publishers, 2002.

## Armstrong,

## EMC Design Techniques For Electronic Engineers

Armstrong/Nutwood Publications, 2010. A comprehensive treatment of EMC theory and practical product design and measurement applications.

## Armstrong,

## EMC For Printed Circuit Boards - Basic and Advanced Design and Layout Techniques

Armstrong/Nutwood Publications, 2010. A comprehensive treatment of PC board layout for EMC compliance.

## ARRL,

The RFI Handbook

(3rd edition), 2010. Good practical book on radio frequency interference with mitigation techniques. Some EMC theory.

## Adamczyk,

Foundations of EMC with Practical Applications

## Bogatin,

Signal & Power Integrity - Simplified Prentice-Hall, 2009 (2nd Edition). Great coverage of signal and power integrity from a fields viewpoint.

#### Brander, et al,

Trilogy of Magnetics - Design Guide for EMI Filter Design, SMPS & RF Circuits

Würth Electronik, 2010. A comprehensive compilation of valuable design information and examples of filter, switch-mode power supply, and RF circuit design.

## Goedbloed,

## Electromagnetic Compatibility

Prentice-Hall, 1990. Good general text on EMC with practical experiments. May be out of print.

## Hall, Hall, and McCall,

High-Speed Digital System Design - A Handbook of Interconnect Theory and Design Practices

## Joffe and Lock,

Grounds For Grounding

Wiley, 2010. This huge book includes way more topics on product design than the title suggests. Covers all aspects of grounding and shielding for products, systems, and facilities.

### Johnson and Graham,

High-Speed Digital Design - A Handbook of Black Magic Prentice-Hall, 1993. Practical coverage of high speed digital signals and measurement.

## Johnson and Graham,

High-Speed Signal Propagation - Advanced Black Magic Prentice-Hall, 2003. Practical coverage of high speed digital signals and measurement.

# **REFERENCES & TOOLS**

## Kunkel,

## Shielding of Electromagnetic Waves, Theory and Practice

Springer. 2019. Provides efficient ways for design engineers to apply electromagnetic theory in shielding of electrical and electronic equipment.

## Ott,

Electromagnetic Compatibility Engineering Wiley, 2009. The "bible" on EMC measurement, theory, and product design.

## Paul,

Introduction to Electromagnetic Compatibility Wiley, 2006 (2nd Edition). The one source to go to for an upper-level course on EMC theory.

## Mardiguian,

Controlling Radiated Emissions by Design Springer, 2016. Good content on product design for compliance.

## Mardiguian,

EMI Troubleshooting Techniques McGraw-Hill, 2000. Good coverage of EMI troubleshooting.

## Montrose,

## EMC Made Simple

Montrose Compliance Services, 2014. The content includes several important areas of EMC theory and product design, troubleshooting, and measurement.

## Morrison,

## Digital Circuit Boards - Mach 1 GHz

Wiley, 2012. Important concepts of designing high frequency circuit boards from a fields viewpoint.

## Morrison,

## Grounding And Shielding - Circuits and Interference Wiley, 2016 (6th Edition). The classic text on grounding and shielding with up to date content on how RF energy flows through circuit boards.

## Sandler,

## Power Integrity - Measuring, Optimizing, and Troubleshooting Power Related Parameters in Electronics Systems

McGraw-Hill, 2014. The latest information on measurement and design of power distribution networks and how the network affects stability and EMC.

## Slattery and Skinner,

Platform Interference in Wireless Systems - Models, Measurement, and Mitigation

Newnes Press, 2008. The first publication to publicize the issue of self-interference to on-board wireless systems.

## Smith,

High Frequency Measurements and Noise in Electronic Circuits Springer, 1993. A classic book on high frequency measurements, probing techniques, and EMC troubleshooting measurements.

## Smith and Bogatin,

Principles of Power Integrity for PDN Design - Simplified Prentice-Hall, 2017. Getting the power distribution network (PDN) design right is the key to reducing EMI.

## Williams,

## EMC For Product Designers

Newnes, 2017. Completely updated text on product design for EMC compliance.

## Weston,

Electromagnetic Compatibility - Methods, Analysis, Circuits, and Measurement

CRC Press, 2017 (3rd Edition). A comprehensive text, encompassing both commercial and military EMC.

## Wiley, 2000. Kimmel and Gerke,

Electromagnetic Compatibility in Medical Equipment IEEE Press, 1995. Good general product design information.

## Witte,

## Spectrum and Network Measurements

(2nd edition), SciTech Publishing, 2014. The best text around explaining the theory and usage of spectrum and network analyzers.

## Wyatt and Jost,

Electromagnetic Compatibility (EMC) Pocket Guide SciTech Publishing, 2013. A handy pocket-sized reference guide to EMC.

## Wyatt and Gruber,

Radio Frequency (RFI) Pocket Guide SciTech Publishing, 2015. A handy pocket-sized reference guide to radio frequency interference.

# LINKEDIN GROUPS

For Industry Specific LinkedIn Groups, please see the Featured Industry sections on Wireless/5G/IoT, Automotive, and Military/Aerospace.

Electromagnetic Compatibility Forum Electromagnetics and Spectrum Engineering Group EMC - Electromagnetic Compatibility EMC Experts EMC Troubleshooters

ESD Experts Signal & Power Integrity Community EMI/EMC Testing IEEE EMC Society iNARTE





# COMMON COMMERCIAL, AUTOMOTIVE, MEDICAL, WIRELESS & MILITARY EMC STANDARDS

## **COMMERCIAL STANDARDS**

The following are some of the most common commercial EMC standards. Most standards have a fee associated and most on the list are linked back to the source where they're available. If you're purchasing the printed version of this guide, then refer to the Standards Organizations in the References section for standards purchase information. Note that many Euro Norm (EN) versions of IEC standards may be purchased at a considerable discount from the Estonian Centre for Standardization, https://www.evs.ee.

FCC https://www.ecfr.gov

Electronic Code of Federal Regulations (e-CFR) CFR 47 - Part 15 (Radio Frequency Devices)

## ANSI

http://webstore.ansi.org

|    | Document Number | Title                                                                                                                                |
|----|-----------------|--------------------------------------------------------------------------------------------------------------------------------------|
| C6 | 3.4             | Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz |

## IEC

https://webstore.iec.ch

| Document Number | Title                                                                                                                                                                                                                                                           |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IEC 60601-1-2   | Medical electrical equipment - Part 1-2: General requirements for basic safety and essential performance - Collateral Standard:<br>Electromagnetic disturbances - Requirements and tests                                                                        |
| IEC 61000-3-3   | Electromagnetic compatibility (EMC) - Part 3-3: Limits – Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current $\leq$ 16 A per phase and not subject to conditional connection |
| IEC 61000-4-2   | Electromagnetic compatibility (EMC) - Part 4-2: Testing and measurement techniques - Electrostatic discharge immunity test                                                                                                                                      |
| IEC 61000-4-4   | Electromagnetic compatibility (EMC) - Part 4-4 : Testing and measurement techniques - Electrical fast transient/burst immunity test                                                                                                                             |
| IEC 61000-4-5   | Electromagnetic compatibility (EMC) - Part 4-5: Testing and measurement techniques - Surge immunity test                                                                                                                                                        |
| IEC 61000-4-7   | Electromagnetic compatibility (EMC) - Part 4-7: Testing and measurement techniques - General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto                                   |

| IEC 61000-4-8  | Electromagnetic compatibility (EMC) - Part 4-8: Testing and measurement techniques - Power frequency magnetic field immunity test                                                                            |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IEC 61000-4-9  | Electromagnetic compatibility (EMC) - Part 4-9: Testing and measurement techniques - Impulse magnetic field immunity test                                                                                    |
| IEC 61000-4-10 | Electromagnetic compatibility (EMC) - Part 4-10: Testing and measurement techniques - Damped oscillatory magnetic field immunity test                                                                        |
| IEC 61000-4-10 | Electromagnetic compatibility (EMC) - Part 4-10: Testing and measurement techniques - Damped oscillatory magnetic field immunity test                                                                        |
| IEC 61000-6-1  | Electromagnetic compatibility (EMC) - Part 6-1: Generic standards - Immunity standard for residential, commercial and light-industrial environments                                                          |
| IEC 61000-6-2  | Electromagnetic compatibility (EMC) - Part 6-2: Generic standards - Immunity standard for industrial environments                                                                                            |
| IEC 61000-6-5  | Electromagnetic compatibility (EMC) - Part 6-5: Generic standards - Immunity for power station and substation environments                                                                                   |
| IEC 61000-6-7  | Electromagnetic compatibility (EMC) - Part 6-7: Generic standards - Immunity requirements for equipment intended to perform functions in a safety-related system (functional safety) in industrial locations |

## CISPR

https://webstore.iec.ch

| Document Number | Title                                                                                                                                                                                                                    |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CISPR 12        | Vehicles, boats and internal combustion engines - Radio disturbance characteristics - Limits and methods of measurement for the protection of off-board receivers                                                        |
| CISPR 16-1-2    | Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-2: Radio disturbance and immunity measuring apparatus - Coupling devices for conducted disturbance measurements                |
| CISPR 16-1-3    | Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-3: Radio disturbance and immunity measuring apparatus - Ancillary equipment - Disturbance power                                |
| CISPR 16-1-5    | Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-5: Radio disturbance and immunity measuring apparatus - Antenna calibration sites and reference test sites for 5 MHz to 18 GHz |
| CISPR 16-1-6    | Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-6: Radio disturbance and immunity measuring apparatus - EMC antenna calibration                                                |
| CISPR 16-2-1    | Specification for radio disturbance and immunity measuring apparatus and methods - Part 2-1: Methods of measurement of disturbances and immunity - Conducted disturbance measurements                                    |
| CISPR 16-2-2    | Specification for radio disturbance and immunity measuring apparatus and methods - Part 2-2: Methods of measurement of disturbance power                                                                                 |
| CISPR 16-2-3    | Specification for radio disturbance and immunity measuring apparatus and methods - Part 2-3: Methods of measurement of disturbances and immunity - Radiated disturbance measurements                                     |
| CISPR 16-2-4    | Specification for radio disturbance and immunity measuring apparatus and methods - Part 2-4: Methods of measurement of disturbances and immunity - Immunity measurements                                                 |

| CISPR TR 16-2-5 | Specification for radio disturbance and immunity measuring apparatus and methods - Part 2-5: In situ measurements for disturbing emissions produced by physically large equipment                                                                    |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CISPR TR 16-4-1 | Specification for radio disturbance and immunity measuring apparatus and methods - Part 4-1: Uncertainties, statistics and limit modelling -<br>Uncertainties in standardized EMC tests                                                              |
| CISPR 16-4-2    | Specification for radio disturbance and immunity measuring apparatus and methods - Part 4-2: Uncertainties, statistics and limit modelling - Measurement instrumentation uncertainty                                                                 |
| CISPR TR 16-4-3 | Specification for radio disturbance and immunity measuring apparatus and methods - Part 4-3: Uncertainties, statistics and limit modelling - Statistical considerations in the determination of EMC compliance of mass-produced products             |
| CISPR TR 16-4-4 | Specification for radio disturbance and immunity measuring apparatus and methods - Part 4-4: Uncertainties, statistics and limit modelling - Statistics of complaints and a model for the calculation of limits for the protection of radio services |
| CISPR TR 16-4-5 | Specification for radio disturbance and immunity measuring apparatus and methods - Part 4-5: Uncertainties, statistics and limit modelling - Conditions for the use of alternative test methods                                                      |
| CISPR 17        | Methods of measurement of the suppression characteristics of passive EMC filtering devices                                                                                                                                                           |
| CISPR 32        | Electromagnetic compatibility of multimedia equipment - Emission requirements                                                                                                                                                                        |
| CISPR 35        | Electromagnetic compatibility of multimedia equipment - Immunity requirements                                                                                                                                                                        |

## AUTOMOTIVE ELECTROMAGNETIC COMPATIBILITY STANDARDS

The following abbreviated list of automotive EMC standards was developed by Dr. Todd Hubing, Professor Emeritus of Clemson University Vehicular Electronics Lab (https://learnemc.com/automotive-emc-test-standards). A few of these standards have been made public and are linked below, but many others are considered company confidential and are only available to approved automotive vendors or test equipment manufacturers. While several standards are linked on this list, an internet search may help locate additional documents that have been made public. For a more complete list, refer to the link above. Permission to republish has been granted.

## CISPR (AUTOMOTIVE EMISSIONS REQUIREMENTS)

https://webstore.iec.ch

| Document Number | Title                                                                                                                                                                                                                                                                 |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CISPR 12        | Vehicles, boats, and internal combustion engine driven devices - Radio disturbance characteristics - Limits and methods of measurement for the protection of receivers except those installed in the vehicle/boat/device itself or in adjacent vehicles/boats/devices |

## ISO (AUTOMOTIVE IMMUNITY REQUIREMENTS)

https://www.iso.org

| Document Number | Title                                                                                                                                                                                                         |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ISO 7637-2      | Road vehicles – Electrical disturbances from conduction and coupling – Part 2: Electrical transient conduction along supply lines only                                                                        |
| ISO/TR 10305-1  | Road vehicles – Calibration of electromagnetic field strength measuring devices – Part 1: Devices for measurement of electromagnetic fields at frequencies > 0 Hz                                             |
| ISO/TR 10305-2  | Road vehicles – Calibration of electromagnetic field strength measuring devices – Part 2: IEEE standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz |
| ISO/TS 21609    | Road vehicles – (EMC) guidelines for installation of aftermarket radio frequency transmitting equipment                                                                                                       |
| ISO 11452-7     | Road vehicles – Component test methods for electrical disturbances from narrowband radiated electromagnetic energy – Part 7: Direct radio frequency (RF) power injection                                      |
| ISO 11452-10    | Road vehicles – Component test methods for electrical disturbances from narrowband radiated electromagnetic energy – Part 10:<br>Immunity to conducted disturbances in the extended audio frequency range     |

# SAE (AUTOMOTIVE EMISSIONS AND IMMUNITY) http://standards.sae.org

| Document Number | Title                                                                                                                                                                  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J1113/1         | Electromagnetic Compatibility Measurement Procedures and Limits for Components of Vehicles, Boats (Up to 15 M), and Machines<br>(Except Aircraft) (50 Hz to 18 Ghz)    |
| J1113/4         | Immunity to Radiated Electromagnetic Fields-Bulk Current Injection (BCI) Method                                                                                        |
| J1113/11        | Immunity to Conducted Transients on Power Leads                                                                                                                        |
| J1113/12        | Electrical Interference by Conduction and Coupling - Capacitive and Inductive Coupling via Lines Other than Supply Lines                                               |
| J1113/13        | Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Part 13: Immunity to Electrostatic Discharge                                              |
| J1113/26        | Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Immunity to AC Power Line Electric Fields                                                 |
| J1113/27        | Electromagnetic Compatibility Measurements Procedure for Vehicle Components - Part 27: Immunity to Radiated Electromagnetic Fields -<br>Mode Stir Reverberation Method |
| J1752/1         | Electromagnetic Compatibility Measurement Procedures for Integrated Circuits-Integrated Circuit EMC Measurement Procedures-General and Definition                      |
| J1752/2         | Measurement of Radiated Emissions from Integrated Circuits – Surface Scan Method (Loop Probe Method) 10 MHz to 3 GHz                                                   |
| J1752/3         | Measurement of Radiated Emissions from Integrated Circuits – TEM/Wideband TEM (GTEM) Cell Method; TEM Cell (150 kHz to 1 GHz), Wideband TEM Cell (150 kHz to 8 GHz)    |
| J551/5          | Performance Levels and Methods of Measurement of Magnetic and Electric Field Strength from Electric Vehicles, Broadband, 9 kHz To 30<br>MHz                            |
| J551/15         | Vehicle Electromagnetic Immunity–Electrostatic Discharge (ESD)                                                                                                         |
| J551/16         | Electromagnetic Immunity - Off-Vehicle Source (Reverberation Chamber Method) - Part 16 - Immunity to Radiated Electromagnetic Fields                                   |
| J551/17         | Vehicle Electromagnetic Immunity – Power Line Magnetic Fields                                                                                                          |
| J1812           | Function Performance Status Classification for EMC Immunity Testing                                                                                                    |
| J2628           | Characterization–Conducted Immunity                                                                                                                                    |
| J2556           | Radiated Emissions (RE) Narrowband Data Analysis–Power Spectral Density (PSD)                                                                                          |

| Document Number | Title                                                                                                                                                                               |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| GMW3091         | General Specification for Vehicles, Electromagnetic Compatibility (EMC)-Engl; Revision H; Supersedes GMI 12559 R and GMI 12559 V                                                    |  |
| GMW3097         | General Specification for Electrical/Electronic Components and Subsystems, Electromagnetic Compatibility-Engl; Revision H; Supersedes<br>GMW12559, GMW3100, GMW12002R AND GMW12002V |  |

## FORD

https://www.fordemc.com

| Document Number   | Title                                               |
|-------------------|-----------------------------------------------------|
| FORD F-2          | Electrical and Electronics System Engineering       |
| FORD WSF-M22P5-A1 | Printed Circuit Boards, PTF, Double Sided, Flexible |

## DaimlerChrysler

| Document Number | Title                                                                               |
|-----------------|-------------------------------------------------------------------------------------|
| DC-10614        | EMC Performance Requirements - Components                                           |
| DC-10615        | Electrical System Performance Requirements for Electrical and Electronic Components |
| DC-11224        | EMC Performance Requirements - Components                                           |
| DC-11225        | EMC Supplemental Information and Alternative Component Requirements                 |
| DC-11223        | EMC Performance Requirements - Vehicle                                              |

# Automotive Electromagnetic Compatibility Standards From https://cecas.clemson.edu/cvel/emc/

## MEDICAL STANDARDS

## **COLLATERAL STANDARDS**

https://www.webstore.iec.ch

| Document Number | Title                                                                                                |
|-----------------|------------------------------------------------------------------------------------------------------|
| IEC 60601-1-2   | Electromagnetic disturbances - requirements and tests                                                |
| IEC 60601-1-3   | Radiation protection in diagnostic x-ray equipment                                                   |
| IEC 60601-1-6   | General requirements for basic safety and essential performance - Usability                          |
| IEC 60601-1-8   | General requirements for basic safety and essential performance - Alarm systems                      |
| IEC 60601-1-9   | Requirements for environmentally conscious design                                                    |
| IEC 60601-1-10  | Requirements for the development of physiologic closed-loop controllers                              |
| IEC 60601-1-11  | Medical electrical equipment and medical electrical systems used in the home healthcare environment  |
| IEC 60601-1-12  | Medical electrical equipment and medical electrical systems used in the medical services environment |

## OTHER RELEVANT STANDARDS

https://www.webstore.iec.ch

| Document Number | Title                                                           |
|-----------------|-----------------------------------------------------------------|
| IEC 60601-1     | General requirements for basic safety and essential performance |
| IEC TR 62354    | General testing procedures for medical electrical equipment     |
| ISO 14708-1     | Active implantable medical devices                              |

## For more extensive listings of medical standards, download the 2020 Medical EMC Guide:

https://learn.interferencetechnology.com/2020-medical-emc-guide/

## COMMON WIRELESS STANDARDS

## **ETSI STANDARDS**

https://www.etsi.org

| Document Number    | Title                                                                                                                                                                                                                                                                                          |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ETSI EN 300 220    | Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices (SRD); Radio equipment to be used in the 25MHz to 1000MHz frequency range with power levels ranging up to 500mW                                                                                            |
| ETSI EN 300 328    | Electromagnetic compatibility and Radio Spectrum Matters (ERM); Wideband transmission systems; Data transmission equipment operating in the 2.4 GHz ISM band and using wide band modulation techniques; Harmonized EN covering essential requirements under article 3.2 of the R&TTE Directive |
| ETSI EN 300 330    | Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices (SRD); Radio equipment to be used in the 9kHz to 25MHz frequency range and inductive loop systems in the 9kHz to 30MHz frequency range                                                                     |
| ETSI EN 300 440    | Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices (SRD); Radio equipment to be used in the 1GHz to 40GHz frequency range                                                                                                                                     |
| ETSI EN 301 489-3  | Electromagnetic compatibility and Radio spectrum Matters (ERM); Electromagnetic<br>Compatibility (EMC) standard for radio equipment and services; Part 3: Specific conditions<br>for Short Range Devices (SRD) operating on frequencies between 9kHz and 40GHz                                 |
| ETSI EN 301 489-17 | Electromagnetic compatibility and Radio spectrum Matters (ERM); Electromagnetic Compatibility (EMC) standard for radio equipment and services; Part 17: Specific conditions for Wideband data and HIPERLAN equipment                                                                           |
| ETSI EN 301 893    | Broadband Radio Access Networks (BRAN); 5 GHz high performance RLAN; Harmonized EN covering essential requirements of article 3.2 of the R&TTE Directive                                                                                                                                       |
| ETSI EN 303 413    | GPS receivers                                                                                                                                                                                                                                                                                  |
| ETSI EN 303 417    | Wireless Power Transfer                                                                                                                                                                                                                                                                        |

## COMMON MILITARY RELATED DOCUMENTS AND STANDARDS

The following references are not intended to be all inclusive, but rather a representation of available sources of additional information and point of contacts. Downloadable from: http://everyspec.com.

| Document Number | Title                                                                                                                 |
|-----------------|-----------------------------------------------------------------------------------------------------------------------|
| MIL-HDBK-235-1  | Military Operational Electromagnetic Environment Profiles Part 1C General Guidance, 1<br>Oct 2010                     |
| MIL-HDBK-1857   | Grounding, Bonding and Shielding Design Practices, 27 Mar 1998                                                        |
| MIL-STD-220C    | Test Method Standard Method of Insertion Loss Measurement, 14 May 2009                                                |
| MIL-STD-449D    | Radio Frequency Spectrum Characteristics, Measurement of, 22 Feb 1973                                                 |
| MIL-STD-461F    | Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment, 10 Dec 2007 |
| MIL-STD-461G    | Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment, 11 Dec 2015 |
| MIL-STD-464C    | Electromagnetic Environmental Effects Requirements for Systems, 01 Dec 2010                                           |
| MIL-STD-1541A   | Electromagnetic Compatibility Requirements for Space Systems, 30 Dec 1987                                             |
| MIL-STD-1542B   | Electromagnetic Compatibility and Grounding Requirements for Space System Facilities, 15 Nov 1991                     |
| MIL-STD-1605A   | Procedures for Conducting a Shipboard Electromagnetic Interference (EMI) Survey (Surface Ships), 08 Oct 2009          |
| DoDI 3222.03    | DoD Electromagnetic Environmental Effects (E3) Program, 24 Aug 2014                                                   |

EMC FUNDAMENTALS

## **AEROSPACE STANDARDS**

## AIAA STANDARDS

http://www.aiaa.org/default.aspx

| Document Number | Title                                                                      |
|-----------------|----------------------------------------------------------------------------|
| S-121-2009      | Electromagnetic Compatibility Requirements for Space Equipment and Systems |

## **RTCA STANDARDS**

www.rtca.org/

| Document Number  | Title                                                                                                                    |
|------------------|--------------------------------------------------------------------------------------------------------------------------|
| DO-160G          | Environmental Conditions and Test Procedures for Airborne Equipment                                                      |
| DO-160G Change 1 | Environmental Conditions and Test Procedures for Airborne Equipment                                                      |
| DO-233           | Portable Electronic Devices Carried on Board Aircraft                                                                    |
| DO-235B          | Assessment of Radio Frequency Interference Relevant to the GNSS L1 Frequency Band                                        |
| D0-292           | Assessment of Radio Frequency Interference Relevant to the GNSS L5/E5A Frequency Band                                    |
| D0-294C          | Guidance on Allowing Transmitting Portable Electronic Devices (T-PEDs) on Aircraft                                       |
| D0-307           | Aircraft Design and Certification for Portable Electronic Device (PED) Tolerance                                         |
| D0-357           | User Guide: Supplement to DO-160G                                                                                        |
| DO-363           | Guidance for the Development of Portable Electronic Devices (PED) Tolerance for Civil Aircraft                           |
| D0-364           | Minimum Aviation System Performance Standards (MASPS) for Aeronautical Information/<br>Meteorological Data Link Services |
| DO-363           | Guidance for the Development of Portable Electronic Devices (PED) Tolerance for Civil Aircraft                           |
| D0-307A          | Aircraft Design and Certification for Portable Electronic Device (PED) Tolerance                                         |

## SAE STANDARDS

www.sae.org/

| Document Number | Title                                                                               |  |
|-----------------|-------------------------------------------------------------------------------------|--|
| ARP 5583A       | Guide to Certification of Aircraft in a High Intensity Radiation (HIRF) Environment |  |

# EMC FUNDAMENTALS

# REFERENCES

## EMC STANDARDS ORGANIZATIONS

American National Standards Institute http://www.ansi.org

ANSI Accredited C63 http://www.c63.org

## Asia Pacific Laboratory Accreditation Cooperation (APLAC) http://www.aplac.org

BSMI (Taiwan) https://www.bsmi.gov.tw/wSite/xslgip/chinese/index.html

CNCA (China) http://www.cnca.gov.cn/cnca/cncatest/20040420/column/227.htm

FDA Center for Devices & Radiological Health (CDRH) https://www.fda.gov/MedicalDevices/default.htm

Federal Communications Commission (FCC) http://www.fcc.gov

Gosstandart (Russia) http://gosstandart.gov.by/en-US/index.php IEC https://www.iec.ch/homepage

IEEE Standards Association http://www.standards.ieee.org

IEEE EMC Society Standards Development Committee (SDCOM) https://standards.ieee.org/project/2665.html

Industry Canada (Certifications and Standards) http://www.ic.gc.ca/eic/site/smt-gst.nsf/eng/h\_sf06165. html

ISO (International Organization for Standards) https://www.iso.org/home.html

RTCA https://www.rtca.org

SAE EMC Standards Committee http://www.sae.org

VCCI (Japan, Voluntary Control Council for Interference) http://www.vcci.jp/vcci\_e/

## **RECOMMENDED BOOKS**

## André and Wyatt

EMI Troubleshooting Cookbook for Product Designers

SciTech Publishing, 2014. Includes chapters on product design and EMC theory & measurement. A major part of the content includes how to troubleshoot and mitigate all common EMC test failures.

## Archambeault

PCB Design for Real-World EMI Control Kluwer Academic Publishers, 2002.

## Bogatin

Signal & Power Integrity - Simplified Prentice-Hall, 2018 (3rd Edition). Great coverage of signal and power integrity from a fields viewpoint.

## Hall, Hall, and McCall

High-Speed Digital System Design - A Handbook of Interconnect Theory and Design Practices Wiley, 2000.

## Joffe and Lock

Grounds For Grounding Wiley, 2010. This huge book includes way more topics on product design than the title suggests. Covers all aspects of grounding and shielding for products, systems, and facilities.

## Johnson and Graham

High-Speed Digital Design -A Handbook of Black Magic Prentice-Hall, 1993. Practical coverage of high speed digital signals and measurement.

## Johnson and Graham

High-Speed Signal Propagation -Advanced Black Magic Prentice-Hall, 2003. Practical coverage of high speed digital signals and measurement.

## Kimmel and Gerke

Electromagnetic Compatibility in Medical Equipment IEEE Press, 1995. Good general product design information.

## Mardiguian

Controlling Radiated Emissions by Design Springer, 2016. Good content on product design for compliance.

## Mardiguian

EMI Troubleshooting Techniques McGraw-Hill, 2000. Good coverage of EMI troubleshooting.

## Montrose

EMC Made Simple - Printed Circuit Board and System Design Montrose Compliance Services, 2014. Includes basic theory and product design information

## Morrison

Grounding And Shielding - Circuits and Interference Wiley, 2016 (6th Edition). The classic text on grounding and shielding with up to date content on how RF energy flows through circuit boards.

## Morrison

## Fast Circuit Boards - Energy Management

Wiley, 2018. A brand new book explaining how electromagnetic energy moves through circuit boards. Destined to be a classic.

## Ott

## Electromagnetic Compatibility Engineering

Wiley, 2009. The "bible" on EMC measurement, theory, and product design.

## Paul

Introduction to Electromagnetic Compatibility Wiley, 2006 (2nd Edition). The one source to go to for an upperlevel course on EMC theory.

## Sandler

Power Integrity - Measuring, Optimizing, and Troubleshooting Power Related Parameters in Electronics Systems

McGraw-Hill, 2014. The latest information on measurement and design of power distribution networks and how the network affects stability and EMC.

## Smith and Bogatin

Principles of Power Integrity for PDN Design -Simplified Prentice-Hall 2017 Getting the power distribution

Prentice-Hall, 2017. Getting the power distribution network (PDN) design right is the key to reducing EMI.

## Williams

EMC For Product Designers Newnes, 2017. Completely updated text on product design for EMC compliance.

## Weston

Electromagnetic Compatibility - Methods, Analysis, Circuits, and Measurement CRC Press, 2017 (3rd Edition). A comprehensive text, primarily focused on military EMC.

## Wyatt & Jost

**Electromagnetic Compatibility (EMC) Pocket Guide** SciTech Publishing, 2013. A handy pocket-sized reference guide to EMC.

## **RECOMMENDED GUIDES FROM INTERFERENCE TECHNOLOGY**

## 2024 EMC Fundamentals Guide

https://learn.interferencetechnology.com/2024-emcfundamentals-guide

## 2023 EMC Testing Guide

https://learn.interferencetechnology.com/2023-emctesting-guide/

## 2023 EMC Fundamentals Guide

https://learn.interferencetechnology.com/2023-emcfundamentals-guide

## 2023 Military & Aerospace EMC Guide

https://learn.interferencetechnology.com/2023-militaryand-aerospace-emc-guide/

## 2023 IoT, Wireless, 5G EMC Guide

https://learn.interferencetechnology.com/2023-iotwireless-5g-emc-guide/

## 2023 EMC SI & PI Guide

https://learn.interferencetechnology.com/2023-signal-and-power-integrity-guide/

## 2022 EMC Testing Guide

https://learn.interferencetechnology.com/2022-emc-testing-guide//

## 2022 Military & Aerospace EMC Guide

https://learn.interferencetechnology.com/2022-militaryand-aerospace-emc-guide/

## 2022 IoT, Wireless, 5G EMC Guide

https://learn.interferencetechnology.com/2022-iotwireless-5g-emc-guide/

## 2021 Automotive EMC Guide

https://learn.interferencetechnology.com/2021automotive-emc-guide/

## **OTHER WEBSITES**

**Doug Smith** http://emcesd.com

## **EMC Information Centre (Archived)**

http://www.compliance-club.com

**Henry Ott** https://hotelelconsultants.net/bio/

Interference Technology https://interferencetechnology.com

Keith Armstrong https://www.emcstandards.co.uk

Kenneth Wyatt http://www.emc-seminars.com

Patrick André http://andreconsulting.com

Silent Solutions https://silent-solutions.com/

University of Missouri EMC Lab https://emclab.mst.edu

University of Oklahoma EMC https://www.ou.edu/tulsa/wecad

## Van Doren Company

http://www.emc-education.com

## LIST OF LINKEDIN GROUPS

- · Aircraft and Spacecraft ESD/EMI/EMC Issues
- Automotive EMC Troubleshooting Experts
- Electromagnetic Compatibility Forum
- · Electromagnetics and Spectrum Engineering Group
- · EMC Electromagnetic Compatibility
- EMC Experts
- EMC Troubleshooters
- · ESD Experts
- Signal & Power Integrity Community

# DEMYSTIFYING THE MATH OF EMC

## Interference Technology Editorial Board

As we progress through the fold of technological developments, be it in commercial products, military advancements, automotive electronics, or any of the other industries where electromagnetic devices are developed, EMI will be present and EMC testing will be required.

For those technical personnel who are walking into a laboratory for the first time, learning EMC because their boss said so, or are taking up an interest in the industry, a few simple yet fundamental math lessons need to be known to understand how things are calculated in an EMC laboratory environment.

This article is intended for the beginner or anybody who needs a refresher on the beautiful math of the EMC world.

#### OHM'S LAW AND IMPEDANCE

Any electrical engineer knows Ohm's Law. If not, a refund should be issued from the institution attended, because it's literally the first thing learned in an electrical engineering class. Ohm's law is utilized to derive power (Watts), voltage (Volts), current (Amperes), and resistance/impedance (Ohms). Two simple equations are given to find any of the above values:

Power (Watts) = Voltage (Volts) x Current (Amperes) Voltage (Volts) = Current (Amperes) x Impedance (Ohms)\*

\*RF, including EMC Testing, typically uses 50 Ohms as the defining impedance

From these two equations, we can find any of the above values utilizing simple algebra. Once we know how to get from Power to Volts to Amps to Ohms or any combination in between, we can start talking about more important things we might see.

## BRING ON THE DECIBEL

EMC testing, including limits, field strengths, transfer functions, shielding effectiveness, and a myriad of other measurements and notations are almost always noted utilizing the decibel (dB). The decibel is a way of expressing units of measurement in a logarithmic notation. This is a very useful way of expressing numbers that are increasing quickly (exponentially) as they relate to what is happening in an EMC system or during an EMC test.

In many EMC test and measurements, the results are often very large or very small, and the dB gives a very convenient way of presenting the data. If two very dissimilar numbers need to be shown on a graph, the dB is a good way of doing it.

For example, looking at power:

- 1 Watt = 30 dBm
- 10 Watts = 40 dBm
- 1 Kilowatt = 60 dBm

Seeing those values should beg the question of how they are derived. Converting between the dB values of power, voltage, and current is pretty simple. Remember that our impedance is 50 Ohms, so it's a constant in these equations.

And you really only need to know 3: Power (dBm) = 10\*log(power in milliwatts(mW)) Voltage (dBuV) = 20\*log(Voltage in microvolts (uV)) Current (dBuA) = 20\*log(current in microamperes(uA))

Since this is a 50 Ohm system, we also need to remember what the impedance of 50 Ohms is in logarithmic terms: Impedance (dBOhms) = 20log(impedance) = 20log(50) = 33.979 = 34

Something to remember is that we can't just add and subtract these logarithmic terms like we would linear terms. In fact, adding and subtracting in logarithmic terms is the same as multiplying and dividing in linear terms.

For example: 13 dBuV + 44 dBuV = 57 dBuv

If we convert these terms back to linear and perform the inverse of the Voltage equation above:

uV =  $10^{(dBuv/20)}$ uV =  $10^{(13/20)}$  = 4.47 uV and uV =  $10^{(44/20)}$  = 158.49 uV

4.47 uV \* 158.49 uV = 708.45 uV 20\*log(708.45) = 57.01 dBuV

Conversely, subtracting in logarithms is the same as dividing in linear: dB1 - dB2 = Linear1/Linear2

## HOW TO CONVERT BETWEEN DBUA, DBM, AND DBUV

Often enough, an engineer will need to convert between current, voltage, and power for several different reasons, whether it be converting limits, measurements, or understanding data. Simple addition and subtraction will get us wherever we want to go.

Remembering that our impedance is 50 Ohms: Impedance (dBOhms) = 20 log (50) = 33.979 = 34

| dBm = dBuV - 107 | dBuV = dBm + 107 |
|------------------|------------------|
| dBuV = dBuA + 34 | dBuA = dBuV - 34 |
| dBm = dBuA + 73  | dBm = dBuA - 73  |

As a quick exercise, let's convert 0 dBm to dBuV:

0 dBm = x dBuV 0 dBm = 0.001 Watts or 1 mW 0 dBm = 0.224V 0.001W = (Volts<sup>2</sup>)/50 Ohms 0.001W x 50 Ohms = Volts<sup>2</sup> Sqrt(0.001Wx50Ohms) = Volts = 0.224V = 0.224x10<sup>6</sup> uV Volts 20 log (0.224x10<sup>6</sup> uV) = 106.987 dBuV

## DECADES AND OCTAVES

Decades and octaves are typically used in frequency ranges, which are found throughout the EMC sphere. A good understanding of these will enable you to read limits and graphs when looking at data.

An octave is defined as a doubling or halving of a value. So if we are at 1 GHz, an increase of 1 octave is 2 GHz. an octave above 2 GHz is 4 GHz, and so on.

A decade is defined as ten times (or a tenth) of any value. If we are at 1 GHz, an increase of 1 decade is 10 GHz. A decade above that is 100 GHz and so on.

Limits will sometimes be expressed in terms of decades. For example, an emissions limit might be expressed as "starting at 10 kHz and increasing 10 dB per decade to 1 GHz."

## A dB IS A dB

When you convert linear terms to logarithmic terms (dB), you've created a situation where all of the units are relatable. This is important to note because as power levels increase

and voltage levels increase, an engineer might be interested to know how much power it takes to get to a certain field level.

To increase an octave in Voltage (or field level), you need to add 6 dB. To increase an octave in power, you need to add 3 dB. And this is where this knowledge becomes important.

If we have a field level in a test of 100 V/m, and we need to increase that to 200 V/m, we need to add 6 dB. Well, that goes for our power also. We need to increase the power by 6 dB coming from our test system, mainly our amplifier.

So, for example, let's say we need 150 Watts (51.76 dBm) to reach 100 V/m (163.52 dBuB/m) in our system. Since we need to add 6 dB to the field, we also need to add 6 dB to the amplifier, so we need 51.76 + 6 = 57.76 dBm. From what we've learned so far, that's:

 $10^{(57.76/10)} = 597,035 \text{ mW} = 597 \text{ Watts}$ , which is a big difference from 150 Watts.

## **STORY TIME**

Given everything above, and with a little practice, the simple math of EMC can be learned and applied in different ways. During my time in the laboratory, a customer thought they knew ways to get their device to "pass" by applying some of the math above, albeit incorrectly.

While testing CE101, the measurement was 3 dB above the limit for current harmonics. All measurement system integrities were verified, and we were able to see the measurement on an analyzer. The customer representative asked us to "subtract out our ambient" since the laboratory could have been noisy. While we agreed, we reminded the customer that actually subtracting the dBuA levels was inappropriate and the numbers MUST be converted to linear terms.

The limit level was 100 dBuA, and the measurement was approximately 103.50 dBuA. The noise floor of the analyzer when everything was connected was about 73 dBuA.

So, we showed the customer the following math.

Measurement  $\rightarrow 10^{(103.5/20)}$  = 149,623.56 uA Ambient  $\rightarrow 10^{(73/20)}$  = 4,466.84 uA

Subtracting → 149,623.56 uA - 4,466.84 uA = 145,156.72 uA

Go back to  $dB \rightarrow 20log(145, 156.72) = 103.24$ 

STILL 3 dB ABOVE THE LIMIT

So, just remember how to apply things correctly, and you'll have success in any EMC laboratory you may walk into.

# FUNDAMENTALS OF ELECTROMAGNETIC COMPATIBILITY

Ed Sveda

Spectrum Control

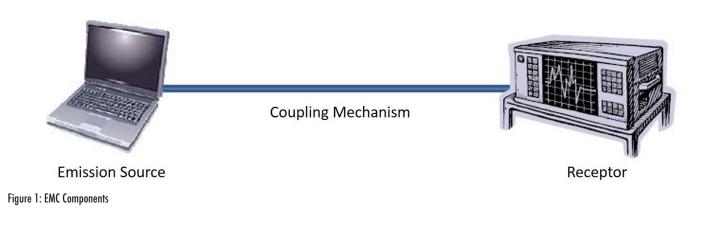
## INTRODUCTION

Electromagnetic Compatibility (EMC) ensures that multiple electronic devices can function acceptably within the same electromagnetic environment by not interfering with each other.

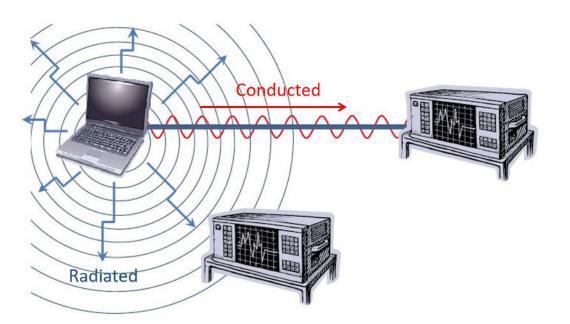
This article is intended to provide the reader with a basic understanding of EMC standards, test methods, and mitigation techniques.

## ELECTROMAGNETIC INTERFERENCE

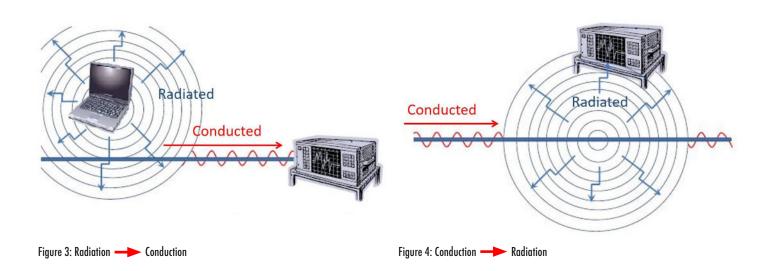
Electromagnetic Interference (EMI) is an electromagnetic emission that causes interference in another electronic device. EMI encompasses the entire electromagnetic spectrum but is most applicable to modern electronic devices over the frequency range of 10 kHz to 10 GHz. EMI can be from intentional or unintentional sources, continuous or intermittent, and at a single frequency or across a broad range of frequencies.


Unintentional EMI sources include switch-mode power supplies (SMPS), digital devices, brushed DC motors, high-voltage ignition systems, and fluorescent lighting. SMPS are the most common unintentional EMI source; since they are now used almost exclusively in LED light bulbs, digital devices, and battery chargers for cell phones and laptops.

Intentional EMI sources are most commonly radio frequency transmitters, whose emissions are often referred to as Radio Frequency Interference (RFI). This includes AM radio, FM radio, television, cell phones, Wi-Fi, Bluetooth, and many other fixed and mobile radio communication systems used by aviation, emergency services, police, and the military.


Intermittent EMI includes transients that can cause catastrophic damage to electronics including electrostatic discharge, lightning, inductive kickback, and electromagnetic pulse events (EMP).

## **EMI COUPLING**


EMI coupling from the source to the receptor can be conducted through wires, radiated through the air, or both. Radiated emissions become more difficult to mitigate at higher frequencies because higher frequencies have shorter wavelengths that are more effectively radiated by typical wire lengths. Radiated emissions readily penetrate non-conductive materials such as air, space, plastic, wood, and insulators.



EMC FUNDAMENTALS







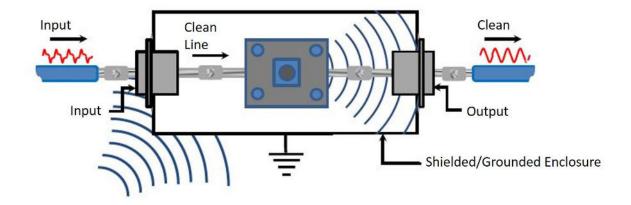



Figure 5: Basic EMI Compliant System

Real-world EMI situations are often a combination of both conducted and radiated emissions, with any or all wires and cables acting as receiving or transmitting antennas.

## EMI SUPPRESSION

EMC requires proper grounding, filtering, and shielding, i.e. you can't simply increase filtering to make up for a bad ground or ineffective shielding.

Radiated EMI often requires shielding electronic components inside a metallic enclosure, and maintaining that shield requires cables and wires to be filtered at the point of entry. Filters reduce conducted EMI on wires and cables into and out of the enclosure. Point of entry feedthrough filters require low-impedance coaxial connections to the metal enclosure to function correctly.

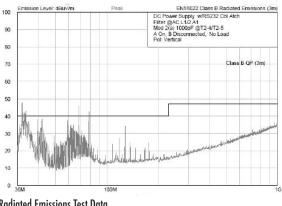
#### **COMPLIANCE TESTING**

The two types of EMC testing are emissions and immunity. Emission testing verifies the frequency and amplitude of a device's emissions are below standardized limits. Immunity testing verifies the acceptable functionality of a device when exposed to standardized EMI levels.

Emissions are measured using a Line Impedance Stabilization Network (LISN), current probe, or antenna connected to an EMI receiver that scans the desired frequency range. Emissions under the limit are passing and emissions over the limit are failing.

Immunity is performed by injecting EMI through a Coupling/ Decoupling Network (CDN), current probe, or antenna and verifying the functionality of the device under test. The pass and fail indications are not seen on the EMC test equipment but are determined by monitoring the functionality of the device being tested while it is exposed to EMI.

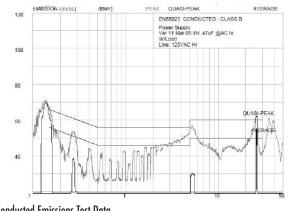
Emission and immunity testing are further broken down into the four basic EMC tests 1) Conducted Emissions, 2) Radiated Emissions, 3) Conducted Immunity, and 4) Radiated Immunity. Conducted emissions and conducted immunity testing does not use an antenna, whereas radiated emissions and radiated immunity testing use antennas. If there is an antenna in the setup radiated emissions or radiated immunity test is being performed.


## **REAL WORLD CONSIDERATIONS**

The typical difference between EMI emission limits and immunity test levels is 100,000 to 1 or 100 dB.Is this a 100 dB safety margin? If electronic devices in a given environment are limited to such low levels of emissions, then why are these same devices required to handle such high levels for

#### Figure 6: Emissions Testing




Radiated Emissions Test Setup



Radiated Emissions Test Data



Conducted Emissions Test Setup

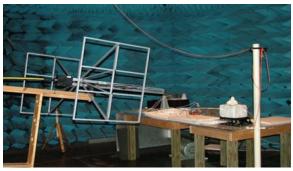


Conducted Emissions Test Data

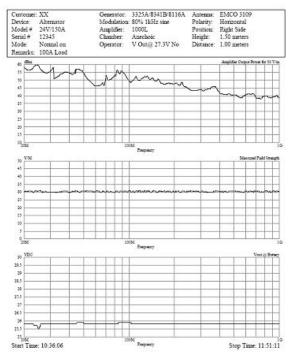
immunity? The reason is that electronic devices must operate in close proximity to both radio transmitters and radio receivers. Radio transmitters generate high-level RFI to communicate over great distances. Radio receivers are very sensitive in order to detect these signals. Immunity test levels simulate the energy levels that electronic devices will be exposed to when they are operated nearby radio transmitters. Emission limits unsure that a device's EMI emissions will not interfere with the reception of nearby radio receivers.

## NOTES

- Equipment expected to operate in close proximity to radio transmitters must be immune to EMI levels in excess of 10 V or 140 dBµV.
- Equipment expected to operate in close proximity to radio receivers typically limit EMI emission levels to less than 0.0001 V or 40 dBµV.


## STANDARDS AND SPECIFICATIONS

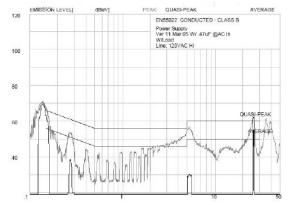
From a global perspective, most governments have rules and regulations related to the control of EMI and call out specific standards for testing devices to ensure EMC compliance.


In the U.S., EMC guidelines for commercial equipment are handled by the Federal Communications Commission (FCC). The Code of Federal Regulations (CFR) section 47 Parts 15, 18, and 68 contain relevant information that all engineers should be aware of when designing class A and B devices.

The US Military has its own standards, which are significantly more stringent. These guidelines are detailed in a wide range of military standards, such as MIL-STD-461 and MIL-STD-464.

#### Figure 7: Immunity Testing




Radiated Immunity Test Setup



Radiated Immunity Test Data



**Conducted Immunity Test Setup** 



Conducted Immunity Test Data

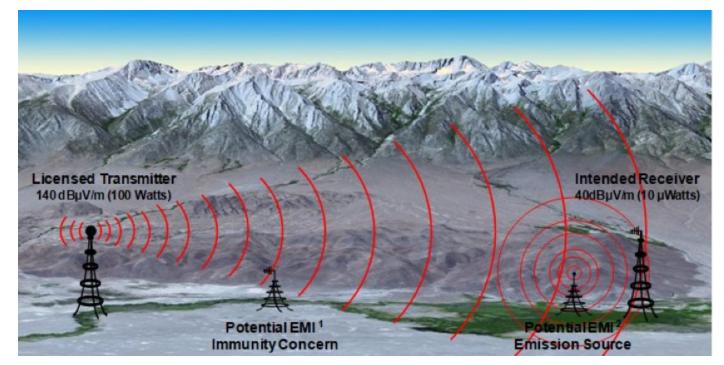



Figure 8

The International Electrotechnical Commission (IEC), via its International Special Committee on Radio Interference (CISPR), creates globally accepted EMC standards.

Test capability at Spectrum Control is extensive and covers a large number of requirements related to the FCC, US Military, and the IEC. Some test capabilities are listed below, but this list continues to evolve and expanded in support of market expectations.

#### Commercial

- FCC Part 15 Emissions
- CISPR 11, 14, 22 Emissions
- CISPR 25 Emissions
- IEC 1000 4 x Immunity

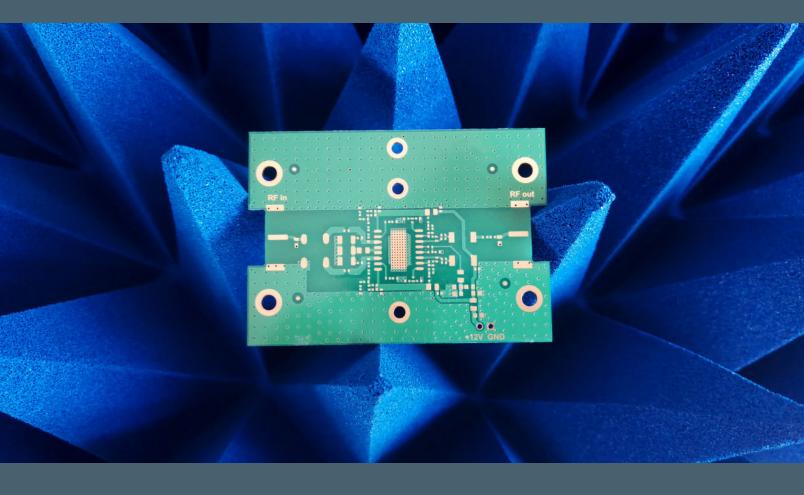
#### International

- EN55011/CISPR 11
- EN55014/CISPR 14
- EN55022/CISPR 22
- EN61000-4-2 Electrostatic Discharge
- EN61000-4-3 Radiated RF Immunity
- EN61000-4-4 Electrical Fast Transient
- EN61000-4-5 Surge
- EN61000-4-6 Conducted RF Immunity

#### Medical

- EN 55011
- EN 55022

#### Military


- MIL-STD-461 A/B/C/D/E/F/G
- MIL-STD-1399
- MIL-STD-704
- MIL-STD-1275

#### CONCLUSION

Electromagnetic Compatibility has become an important aspect in the design of electronic equipment and systems. Equipment manufacturers must stay up to date with continually evolving EMC legislation. It is important to understand EMC since equipment failures at the compliance level can lead to delayed product deliveries and increased development costs. EMC failures at the user level can mean returned equipment, loss of future business, and potential hazards in critical applications.

Please contact Spectrum Control for additional information.





### COMMON COMMERCIAL EMC STANDARDS

#### Commercial Electromagnetic Compatibility (EMC) Standards

| ANSI               |                                                                                                                                                                                                    | IEC (continued)    |                                                                                                                                                                                        |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Document<br>Number | Title                                                                                                                                                                                              | Document<br>Number | Title                                                                                                                                                                                  |
| C63.4              | Methods of Measurement of Radio-Noise Emissions from Low-<br>Voltage Electrical and Electronic Equipment in the Range of 9 kHz<br>to 40 GHz                                                        | IEC/TS 60816       | Guide on methods of measurement of short duration transients<br>on low-voltage power and signal lines                                                                                  |
| IEC<br>Document    |                                                                                                                                                                                                    | IEC 60870-2-1      | Telecontrol equipment and systems - Part 2: Operating<br>conditions - Section 1: Power supply and electromagnetic<br>compatibility                                                     |
| Number             | Title                                                                                                                                                                                              | IEC 60940          | Guidance information on the application of capacitors, resistors, inductors and complete filter units for electromagnetic                                                              |
| IEC 60050-161      | International Electrotechnical Vocabulary. Chapter 161:<br>Electromagnetic compatibility                                                                                                           | 120 00740          | interference suppression                                                                                                                                                               |
| IEC 60060-1        | High-voltage test techniques. Part 1: General definitions and test requirements                                                                                                                    | IEC 60974-10       | Arc welding equipment - Part 10: Electromagnetic compatibility<br>(EMC) requirements                                                                                                   |
| IEC 60060-2        | High-voltage test techniques - Part 2: Measuring systems                                                                                                                                           | IEC/TR 61000-1-1   | Electromagnetic compatibility (EMC) - Part 1: General - Section<br>1: Application and interpretation of fundamental definitions and<br>terms                                           |
| IEC 60060-3        | High-voltage test techniques - Part 3: Definitions and<br>requirements for on-site testing                                                                                                         |                    | Electromagnetic compatibility (EMC) - Part 1-2: General -                                                                                                                              |
| IEC 60118-13       | Electroacoustics - Hearing aids - Part 13: Electromagnetic<br>compatibility (EMC)                                                                                                                  | IEC/TS 61000-1-2   | Methodology for the achievement of the functional safety<br>of electrical and electronic equipment with regard to<br>electromagnetic phenomena                                         |
| IEC 60255-26       | Measuring relays and protection equipment - Part 26:<br>Electromagnetic compatibility requirements                                                                                                 | IEC/TR 61000-1-3   | Electromagnetic compatibility (EMC) - Part 1-3: General - The effects of high-altitude EMP (HEMP) on civil equipment and systems                                                       |
| IEC 60364-4-44     | Low-voltage electrical installations - Part 4-44: Protection<br>for safety - Protection against voltage disturbances and<br>electromagnetic disturbance                                            | IEC/TR 61000-1-4   | Electromagnetic compatibility (EMC) - Part 1-4: General -<br>Historical rationale for the limitation of power-frequency<br>conducted harmonic current emissions from equipment, in the |
| IEC 60469          | Transitions, pulses and related waveforms - Terms, definitions and algorithms                                                                                                                      |                    | frequency range up to 2 kHz<br>Electromagnetic compatibility (EMC) - Part 1-5: General - High                                                                                          |
| IEC 60533          | Electrical and electronic installations in ships - Electromagnetic                                                                                                                                 | IEC/TR 61000-1-5   | power electromagnetic (HPEM) effects on civil systems                                                                                                                                  |
|                    | compatibility (EMC) - Ships with a metallic hull<br>Medical electrical equipment - Part 1-2: General requirements                                                                                  | IEC/TR 61000-1-6   | Electromagnetic compatibility (EMC) - Part 1-6: General - Guide to the assessment of measurement uncertainty                                                                           |
| IEC 60601-1-2      | for basic safety and essential performance - Collateral Standard:<br>Electromagnetic disturbances - Requirements and tests                                                                         | IEC/TR 61000-1-7   | Electromagnetic compatibility (EMC) - Part 1-7: General - Power factor in single-phase systems under non-sinusoidal conditions                                                         |
| IEC 60601-2-2      | Medical electrical equipment - Part 2-2: Particular requirements<br>for the basic safety and essential performance of high frequency<br>surgical equipment and high frequency surgical accessories | IEC/TR 61000-2-1   | Electromagnetic compatibility (EMC) - Part 2: Environment -<br>Section 1: Description of the environment - Electromagnetic<br>environment for low-frequency conducted disturbances and |
| IEC 60601-4-2      | Medical electrical equipment - Part 4-2: Guidance and<br>interpretation - Electromagnetic immunity: performance of                                                                                 | IEC 61000-2-2      | signaling in public power supply systems                                                                                                                                               |
|                    | medical electrical equipment and medical electrical systems                                                                                                                                        |                    | Electromagnetic compatibility (EMC) - Part 2-2: Environment -<br>Compatibility levels for low-frequency conducted disturbances                                                         |
| IEC 60728-2        | Cabled distribution systems for television and sound signals -<br>Part 2: Electromagnetic compatibility for equipment                                                                              |                    | and signaling in public low-voltage power supply systems<br>Electromagnetic compatibility (EMC) - Part 2: Environment                                                                  |
| IEC 60728-12       | Cabled distribution systems for television and sound signals -<br>Part 12: Electromagnetic compatibility of systems                                                                                | IEC/TR 61000-2-3   | - Section 3: Description of the environment - Radiated and non-<br>network-frequency-related conducted phenomena                                                                       |

| IEC (continued)    |                                                                                                                                                                                                                                                          |   |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Document<br>Number | Title                                                                                                                                                                                                                                                    | D |
| IEC 61000-2-4      | Electromagnetic compatibility (EMC) - Part 2-4: Environment<br>- Compatibility levels in industrial plants for low-frequency<br>conducted disturbances                                                                                                   | I |
| IEC/TS 61000-2-5   | Electromagnetic compatibility (EMC) - Part 2: Environment -<br>Section 5: Classification of electromagnetic environments. Basic<br>EMC publication                                                                                                       | I |
| IEC/TR 61000-2-6   | Electromagnetic compatibility (EMC) - Part 2: Environment<br>- Section 6: Assessment of the emission levels in the power<br>supply of industrial plants as regards low-frequency conducted<br>disturbances                                               | I |
| IEC/TR 61000-2-7   | Electromagnetic compatibility (EMC) - Part 2: Environment<br>- Section 7: Low frequency magnetic fields in various<br>environments                                                                                                                       |   |
| IEC/TR 61000-2-8   | Electromagnetic compatibility (EMC) - Part 2-8: Environment<br>- Voltage dips and short interruptions on public electric power<br>supply systems with statistical measurement results                                                                    |   |
| IEC 61000-2-9      | Electromagnetic compatibility (EMC) - Part 2: Environment<br>- Section 9: Description of HEMP environment - Radiated<br>disturbance. Basic EMC publication                                                                                               | I |
| IEC 61000-2-10     | Electromagnetic compatibility (EMC) - Part 2-10: Environment -<br>Description of HEMP environment - Conducted disturbance                                                                                                                                | I |
| IEC 61000-2-11     | Electromagnetic compatibility (EMC) - Part 2-11: Environment -<br>Classification of HEMP environments                                                                                                                                                    |   |
| IEC 61000-2-12     | Electromagnetic compatibility (EMC) - Part 2-12: Environment -<br>Compatibility levels for low-frequency conducted disturbances<br>and signaling in public medium-voltage power supply systems                                                           |   |
| IEC 61000-2-13     | Electromagnetic compatibility (EMC) - Part 2-13: Environment<br>- High-power electromagnetic (HPEM) environments - Radiated<br>and conducted                                                                                                             |   |
| IEC/TR 61000-2-14  | Electromagnetic compatibility (EMC) - Part 2-14: Environment -<br>Overvoltages on public electricity distribution networks                                                                                                                               |   |
| IEC 61000-3-2      | Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits<br>for harmonic current emissions (equipment input current ≤ 16<br>A per phase)                                                                                                          | I |
| IEC 61000-3-3      | Electromagnetic compatibility (EMC) - Part 3-3: Limits –<br>Limitation of voltage changes, voltage fluctuations and flicker<br>in public low-voltage supply systems, for equipment with<br>rated current ≤ 16 A per phase and not subject to conditional | 1 |
| IEC/TS 61000-3-4   | connection<br>Electromagnetic compatibility (EMC) - Part 3-4: Limits -<br>Limitation of emission of harmonic currents in low-voltage<br>power supply systems for equipment with rated current greater<br>than 16 A                                       | 1 |
| IEC/TS 61000-3-5   | Electromagnetic compatibility (EMC) - Part 3: Limits - Section<br>5: Limitation of voltage fluctuations and flicker in low-voltage<br>power supply systems for equipment with rated current greater<br>than 16 A                                         | I |
| IEC/TR 61000-3-6   | Electromagnetic compatibility (EMC) - Part 3: Limits - Section 6:<br>Assessment of emission limits for distorting loads in MV and HV<br>power systems - Basic EMC publication                                                                            |   |
| IEC/TR 61000-3-7   | Electromagnetic compatibility (EMC) - Part 3: Limits - Section 7:<br>Assessment of emission limits for fluctuating loads in MV and HV<br>power systems - Basic EMC publication                                                                           |   |
| IEC 61000-3-8      | Electromagnetic compatibility (EMC) - Part 3: Limits - Section 8:<br>Signaling on low-voltage electrical installations - Emission levels,<br>frequency bands and electromagnetic disturbance levels                                                      |   |
| IEC 61000-3-11     | Electromagnetic compatibility (EMC) - Part 3-11: Limits - Limitation<br>of voltage changes, voltage fluctuations and flicker in public low-<br>voltage supply systems - Equipment with rated current <= 75 A<br>and subject to conditional connection    | I |

| IEC (continued)    |                                                                                                                                                                                                                                        |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Document<br>Number | Title                                                                                                                                                                                                                                  |
| IEC 61000-3-12     | Electromagnetic compatibility (EMC) - Part 3-12: Limits - Limits<br>for harmonic currents produced by equipment connected to<br>public low-voltage systems with input current >16 A and <=75<br>A per phase                            |
| IEC/TR 61000-3-13  | Electromagnetic compatibility (EMC) - Part 3-13: Limits -<br>Assessment of emission limits for the connection of unbalanced<br>installations to MV, HV and EHV power systems                                                           |
| IEC/TR 61000-3-14  | Electromagnetic compatibility (EMC) - Part 3-14: Assessment<br>of emission limits for harmonics, interharmonics, voltage<br>fluctuations and unbalance for the connection of disturbing<br>installations to LV power systems           |
| IEC/TR 61000-3-15  | Electromagnetic compatibility (EMC) - Part 3-15: Limits -<br>Assessment of low frequency electromagnetic immunity and<br>emission requirements for dispersed generation systems in LV<br>network                                       |
| IEC TR 61000-4-1   | Electromagnetic compatibility (EMC) - Part 4-1: Testing and<br>measurement techniques - Overview of IEC 61000-4 series                                                                                                                 |
| IEC 61000-4-2      | Electromagnetic compatibility (EMC)- Part 4-2: Testing and<br>measurement techniques - Electrostatic discharge immunity test                                                                                                           |
| IEC 61000-4-3      | Electromagnetic compatibility (EMC) - Part 4-3 : Testing<br>and measurement techniques - Radiated, radio-frequency,<br>electromagnetic field immunity test                                                                             |
| IEC 61000-4-4      | Electromagnetic compatibility (EMC) - Part 4-4 : Testing and<br>measurement techniques - Electrical fast transient/burst<br>immunity test                                                                                              |
| IEC 61000-4-5      | Electromagnetic compatibility (EMC) - Part 4-5: Testing and measurement techniques - Surge immunity test                                                                                                                               |
| IEC 61000-4-6      | Electromagnetic compatibility (EMC) - Part 4-6: Testing and<br>measurement techniques - Immunity to conducted disturbances,<br>induced by radio-frequency fields                                                                       |
| IEC 61000-4-7      | Electromagnetic compatibility (EMC) - Part 4-7: Testing and<br>measurement techniques - General guide on harmonics and<br>interharmonics measurements and instrumentation, for power<br>supply systems and equipment connected thereto |
| IEC 61000-4-8      | Electromagnetic compatibility (EMC) - Part 4-8: Testing and<br>measurement techniques - Power frequency magnetic field<br>immunity test                                                                                                |
| IEC 61000-4-9      | Electromagnetic compatibility (EMC) - Part 4-9: Testing and<br>measurement techniques - Impulse magnetic field immunity test                                                                                                           |
| IEC 61000-4-10     | Electromagnetic compatibility (EMC) - Part 4-10: Testing and<br>measurement techniques - Damped oscillatory magnetic field<br>immunity test                                                                                            |
| IEC 61000-4-11     | Electromagnetic compatibility (EMC) - Part 4-11: Testing and<br>measurement techniques - Voltage dips, short interruptions and<br>voltage variations immunity tests                                                                    |
| IEC 61000-4-12     | Electromagnetic compatibility (EMC) - Part 4-12: Testing and<br>measurement techniques - Ring wave immunity test                                                                                                                       |
| IEC 61000-4-13     | Electromagnetic compatibility (EMC) - Part 4-13: Testing and<br>measurement techniques - Harmonics and interharmonics<br>including mains signaling at a.c. power port, low frequency<br>immunity tests                                 |
| IEC 61000-4-14     | Electromagnetic compatibility (EMC) - Part 4-14: Testing and<br>measurement techniques - Voltage fluctuation immunity test                                                                                                             |
| IEC 61000-4-15     | Electromagnetic compatibility (EMC) - Part 4: Testing and<br>measurement techniques - Section 15: Flickermeter - Functional<br>and design specifications                                                                               |
| IEC 61000-4-16     | Electromagnetic compatibility (EMC) - Part 4-16: Testing and<br>measurement techniques - Test for immunity to conducted, common<br>mode disturbances in the frequency range 0 Hz to 150 kHz                                            |

| IEC (continued)    |                                                                                                                                                                                                                                          | IEC (co       |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Document<br>Number | Title                                                                                                                                                                                                                                    | Docum<br>Numb |
| IEC 61000-4-17     | Electromagnetic compatibility (EMC) - Part 4-17: Testing and<br>measurement techniques - Ripple on d.c. input power port<br>immunity test                                                                                                | IEC/TF        |
| IEC 61000-4-18     | Electromagnetic compatibility (EMC) - Part 4-18: Testing and measurement techniques - Damped oscillatory wave immunity test                                                                                                              | IEC/TF        |
| IEC 61000-4-19     | Electromagnetic compatibility (EMC) - Part 4-19: Testing and<br>measurement techniques - Test for immunity to conducted,<br>differential mode disturbances and signalling in the frequency<br>range 2 kHz to 150 kHz at a.c. power ports | IEC/TF        |
| IEC 61000-4-20     | Electromagnetic compatibility (EMC) - Part 4-20: Testing and<br>measurement techniques - Emission and immunity testing in<br>transverse electromagnetic (TEM) waveguides                                                                 | IEC/TS        |
| IEC 61000-4-21     | Electromagnetic compatibility (EMC) - Part 4-21: Testing and<br>measurement techniques - Reverberation chamber test methods                                                                                                              | IEC 61        |
| IEC 61000-4-22     | Electromagnetic compatibility (EMC) - Part 4-22: Testing and<br>measurement techniques - Radiated emissions and immunity<br>measurements in fully anechoic rooms (FARs)                                                                  | IEC/TR        |
| IEC 61000-4-23     | Electromagnetic compatibility (EMC) - Part 4-23: Testing and<br>measurement techniques - Test methods for protective devices<br>for HEMP and other radiated disturbances                                                                 | IEC/ IN       |
| IEC 61000-4-24     | Electromagnetic compatibility (EMC) - Part 4-24: Testing and<br>measurement techniques - Test methods for protective devices<br>for HEMP conducted disturbance                                                                           | IEC 61        |
| IEC 61000-4-25     | Electromagnetic compatibility (EMC) - Part 4-25: Testing and<br>measurement techniques - HEMP immunity test methods for<br>equipment and systems                                                                                         | IEC 61        |
| IEC 61000-4-27     | Electromagnetic compatibility (EMC) - Part 4-27: Testing and<br>measurement techniques - Unbalance, immunity test                                                                                                                        | 12001         |
| IEC 61000-4-28     | Electromagnetic compatibility (EMC) - Part 4-28: Testing and<br>measurement techniques - Variation of power frequency,<br>immunity test                                                                                                  | IEC 61        |
| IEC 61000-4-29     | Electromagnetic compatibility (EMC) - Part 4-29: Testing and<br>measurement techniques - Voltage dips, short interruptions and<br>voltage variations on d.c. input power port immunity tests                                             | IEC 61        |
| IEC 61000-4-30     | Electromagnetic compatibility (EMC) - Part 4-30: Testing and measurement techniques - Power quality measurement methods                                                                                                                  | IEC 61        |
| IEC 61000-4-31     | Electromagnetic compatibility (EMC) - Part 4-31: Testing and<br>measurement techniques - AC mains ports broadband conducted<br>disturbance immunity test                                                                                 | IEC 61        |
| IEC/TR 61000-4-32  | Electromagnetic compatibility (EMC) - Part 4-32: Testing and<br>measurement techniques - High-altitude electromagnetic pulse<br>(HEMP) simulator compendium                                                                              | IEC 61        |
| IEC 61000-4-33     | Electromagnetic compatibility (EMC) - Part 4-33: Testing and<br>measurement techniques - Measurement methods for high-<br>power transient parameters                                                                                     | 12001         |
| IEC 61000-4-34     | Electromagnetic compatibility (EMC) - Part 4-34: Testing and<br>measurement techniques - Voltage dips, short interruptions and<br>voltage variations immunity tests for equipment with input                                             | IEC 61        |
|                    | current more than 16 A per phase<br>Electromagnetic compatibility (EMC) - Part 4-35: Testing and                                                                                                                                         | IEC 61        |
| IEC TR 61000-4-35  | measurement techniques - HPEM simulator compendium<br>Electromagnetic compatibility (EMC) - Part 4-36: Testing and<br>measurement techniques - IEMI immunity test methods for                                                            | IEC 61        |
| IEC TR 61000-4-37  | equipment and systems<br>Electromagnetic compatibility (EMC) - Calibration and verification<br>protocol for harmonic emission compliance test systems                                                                                    |               |
| IEC TR 61000-4-38  | Electromagnetic compatibility (EMC) - Part 4-38: Testing and<br>measurement techniques - Test, verification and calibration<br>protocol for voltage fluctuation and flicker compliance test<br>systems                                   | IEC 61        |

|   | IEC (continued)    |                                                                                                                                                                                                                                                                                                           |
|---|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Document<br>Number | Title                                                                                                                                                                                                                                                                                                     |
|   | IEC/TR 61000-5-1   | Electromagnetic compatibility (EMC) - Part 5: Installation and<br>mitigation guidelines - Section 1: General considerations - Basic<br>EMC publication                                                                                                                                                    |
| t | IEC/TR 61000-5-2   | Electromagnetic compatibility (EMC) - Part 5: Installation and mitigation guidelines - Section 2: Earthing and cabling                                                                                                                                                                                    |
|   | IEC/TR 61000-5-3   | Electromagnetic compatibility (EMC) - Part 5-3: Installation and<br>mitigation guidelines - HEMP protection concepts                                                                                                                                                                                      |
| 1 | IEC/TS 61000-5-4   | Electromagnetic compatibility (EMC) - Part 5: Installation<br>and mitigation guidelines - Section 4: Immunity to HEMP -<br>Specifications for protective devices against HEMP radiated<br>disturbance. Basic EMC Publication                                                                              |
|   | IEC 61000-5-5      | Electromagnetic compatibility (EMC) - Part 5: Installation and<br>mitigation guidelines - Section 5: Specification of protective<br>devices for HEMP conducted disturbance. Basic EMC Publication                                                                                                         |
| i | IEC/TR 61000-5-6   | Electromagnetic compatibility (EMC) - Part 5-6: Installation and<br>mitigation guidelines - Mitigation of external EM influences                                                                                                                                                                          |
|   | IEC 61000-5-7      | Electromagnetic compatibility (EMC) - Part 5-7: Installation<br>and mitigation guidelines - Degrees of protection provided by<br>enclosures against electromagnetic disturbances (EM code)                                                                                                                |
|   | IEC 61000-5-8      | Electromagnetic compatibility (EMC) - Part 5-8: Installation and mitigation guidelines - HEMP protection methods for the distributed infrastructure                                                                                                                                                       |
|   | IEC 61000-5-9      | Electromagnetic compatibility (EMC) - Part 5-9: Installation and<br>mitigation guidelines - System-level susceptibility assessments<br>for HEMP and HPEM                                                                                                                                                  |
|   | IEC 61000-6-1      | Electromagnetic compatibility (EMC) - Part 6-1: Generic<br>standards - Immunity standard for residential, commercial and<br>light-industrial environments                                                                                                                                                 |
|   | IEC 61000-6-2      | Electromagnetic compatibility (EMC) - Part 6-2: Generic<br>standards - Immunity standard for industrial environments                                                                                                                                                                                      |
| : | IEC 61000-6-3      | Electromagnetic compatibility (EMC) - Part 6-3: Generic<br>standards - Emission standard for residential, commercial and<br>light-industrial environments                                                                                                                                                 |
|   | IEC 61000-6-4      | Electromagnetic compatibility (EMC) - Part 6-4: Generic<br>standards - Emission standard for industrial environments                                                                                                                                                                                      |
|   | IEC 61000-6-5      | Electromagnetic compatibility (EMC) - Part 6-5: Generic<br>standards - Immunity for power station and substation<br>environments                                                                                                                                                                          |
|   | IEC 61000-6-6      | Electromagnetic compatibility (EMC) - Part 6-6: Generic<br>standards - HEMP immunity for indoor equipment                                                                                                                                                                                                 |
|   | IEC 61000-6-7      | Electromagnetic compatibility (EMC) - Part 6-7: Generic<br>standards - Immunity requirements for equipment intended to<br>perform functions in a safety-related system (functional safety)<br>in industrial locations                                                                                     |
|   | IEC 61326-1        | Electrical equipment for measurement, control and laboratory<br>use - EMC requirements - Part 1: General requirements                                                                                                                                                                                     |
|   | IEC 61326-2-1      | Electrical equipment for measurement, control and laboratory<br>use - EMC requirements - Part 2-1: Particular requirements -<br>Test configurations, operational conditions and performance<br>criteria for sensitive test and measurement equipment for EMC<br>unprotected applications                  |
|   | IEC 61326-2-2      | Electrical equipment for measurement, control and laboratory<br>use - EMC requirements - Part 2-2: Particular requirements - Test<br>configurations, operational conditions and performance criteria<br>for portable test, measuring and monitoring equipment used in<br>low-voltage distribution systems |

EMC TESTING

| IEC (continued)    |                                                                                                                                                                                                                                                                                                                                                | IEC (continued)    |                                                                                                                                                                                                                                                                                                      |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Document<br>Number | Title                                                                                                                                                                                                                                                                                                                                          | Document<br>Number | Title                                                                                                                                                                                                                                                                                                |
| IEC 61326-2-3      | Electrical equipment for measurement, control and laboratory<br>use - EMC requirements - Part 2-3: Particular requirements - Test<br>configuration, operational conditions and performance criteria<br>for transducers with integrated or remote signal conditioning                                                                           | IEC 62153-4-6      | Metallic communication cable test methods - Part 4-6:<br>Electromagnetic compatibility (EMC) - Surface transfer<br>impedance - Line injection method                                                                                                                                                 |
| IEC 61326-2-4      | Electrical equipment for measurement, control and laboratory<br>use - EMC requirements - Part 2-4: Particular requirements - Test<br>configurations, operational conditions and performance criteria<br>for insulation monitoring devices according to IEC 61557-8 and for<br>equipment for insulation fault location according to IEC 61557-9 | IEC 62153-4-7      | Metallic communication cable test methods - Part 4-7:<br>Electromagnetic compatibility (EMC) - Test method for<br>measuring of transfer impedance ZT and screening attenuation<br>aS or coupling attenuation aC of connectors and assemblies up<br>to and above 3 GHz - Triaxial tube in tube method |
| IEC 61326-2-5      | Electrical equipment for measurement, control and laboratory<br>use - EMC requirements - Part 2-5: Particular requirements - Test<br>configurations, operational conditions and performance criteria                                                                                                                                           | IEC 62153-4-8      | Metallic communication cable test methods - Part 4-8:<br>Electromagnetic compatibility (EMC) - Capacitive coupling<br>admittance                                                                                                                                                                     |
| IEC 61326-2-6      | for field devices with field bus interfaces according to IEC 61784-1<br>Electrical equipment for measurement, control and laboratory<br>use - EMC requirements - Part 2-6: Particular requirements - In<br>with discussed (VID) modified equipment                                                                                             | IEC 62153-4-9      | Metallic communication cable test methods - Part 4-9:<br>Electromagnetic compatibility (EMC) - Coupling attenuation of<br>screened balanced cables, triaxial method                                                                                                                                  |
| IEC 61326-3-1      | vitro diagnostic (IVD) medical equipment<br>Electrical equipment for measurement, control and laboratory<br>use - EMC requirements - Part 3-1: Immunity requirements for<br>safety-related systems and for equipment intended to perform                                                                                                       | IEC 62153-4-10     | Metallic communication cable test methods - Part 4-10:<br>Electromagnetic compatibility (EMC) - Transfer impedance and<br>screening attenuation of feed-throughs and electromagnetic<br>gaskets - Double coaxial test method                                                                         |
|                    | safety-related functions (functional safety) - General industrial<br>applications<br>Electrical equipment for measurement, control and laboratory<br>use - EMC requirements - Part 3-2: Immunity requirements                                                                                                                                  | IEC 62153-4-11     | Metallic communication cable test methods - Part 4-11:<br>Electromagnetic compatibility (EMC) - Coupling attenuation or<br>screening attenuation of patch cords, coaxial cable assemblies,<br>pre-connectorized cables - Absorbing clamp method                                                      |
| IEC 61326-3-2      | for safety-related systems and for equipment intended to<br>perform safety-related functions (functional safety) - Industrial<br>applications with specified electromagnetic environment                                                                                                                                                       | IEC 62153-4-12     | Metallic communication cable test methods - Part 4-12:<br>Electromagnetic compatibility (EMC) - Coupling attenuation or<br>screening attenuation of connecting hardware - Absorbing clamp                                                                                                            |
| IEC 61340-3-1      | Electrostatics - Part 3-1: Methods for simulation of electrostatic<br>effects - Human body model (HBM) electrostatic discharge test<br>waveforms                                                                                                                                                                                               |                    | method<br>Metallic communication cable test methods - Part 4-13:                                                                                                                                                                                                                                     |
| IEC 61543          | Residual current-operated protective devices (RCDs) for household and similar use - Electromagnetic compatibility                                                                                                                                                                                                                              | IEC 62153-4-13     | Electromagnetic compatibility (EMC) - Coupling attenuation of<br>links and channels (laboratory conditions) - Absorbing clamp<br>method                                                                                                                                                              |
| IEC 61800-3        | Adjustable speed electrical power drive systems - Part 3: EMC<br>requirements and specific test methods<br>Integrated circuits - Measurement of electromagnetic emissions,                                                                                                                                                                     | IEC 62153-4-14     | Metallic communication cable test methods - Part 4-14:<br>Electromagnetic compatibility (EMC) - Coupling attenuation of<br>cable assemblies (Field conditions) absorbing clamp method                                                                                                                |
| IEC 61967-1        | 150 kHz to 1 GHz - Part 1: General conditions and definitions                                                                                                                                                                                                                                                                                  |                    | Metallic communication cable test methods - Part 4-15:                                                                                                                                                                                                                                               |
| IEC 62040-2        | Uninterruptible power systems (UPS) - Part 2: Electromagnetic compatibility EMC) requirements                                                                                                                                                                                                                                                  | IEC 62153-4-15     | Electromagnetic compatibility (EMC) - Test method for<br>measuring transfer impedance and screening attenuation - or<br>coupling attenuation with triaxial cell                                                                                                                                      |
| IEC 62041          | Power transformers, power supply units, reactors and similar products - EMC requirements                                                                                                                                                                                                                                                       | IEC 62236-1        | Railway applications - Electromagnetic compatibility - Part 1:<br>General                                                                                                                                                                                                                            |
| IEC 62153-4-0      | Metallic communication cable test methods - Part 4-0:<br>Electromagnetic compatibility (EMC) - Relationship between<br>surface transfer impedance and screening attenuation,<br>recommended limits                                                                                                                                             | IEC 62236-2        | Railway applications - Electromagnetic compatibility - Part 2:<br>Emission of the whole railway system to the outside world                                                                                                                                                                          |
| IEC 62153-4-1      | Metallic communication cable test methods - Part 4-1:<br>Electromagnetic compatibility (EMC) - Introduction to                                                                                                                                                                                                                                 | IEC 62236-3-1      | Railway applications - Electromagnetic compatibility - Part 3-1:<br>Rolling stock - Train and complete vehicle                                                                                                                                                                                       |
|                    | electromagnetic screening measurements<br>Metallic communication cable test methods - Part 4-2:                                                                                                                                                                                                                                                | IEC 62236-3-2      | Railway applications - Electromagnetic compatibility - Part 3-2:<br>Rolling stock - Apparatus                                                                                                                                                                                                        |
| IEC 62153-4-2      | Electromagnetic compatibility (EMC) - Screening and coupling attenuation - Injection clamp method                                                                                                                                                                                                                                              | IEC 62236-4        | Railway applications - Electromagnetic compatibility<br>- Part 4: Emission and immunity of the signalling and<br>telecommunications apparatus                                                                                                                                                        |
| IEC 62153-4-3      | Metallic communication cable test methods - Part 4-3:<br>Electromagnetic compatibility (EMC) - Surface transfer<br>impedance - Triaxial method                                                                                                                                                                                                 | IEC 62236-5        | Railway applications - Electromagnetic compatibility - Part 5:<br>Emission and immunity of fixed power supply installations and<br>apparatus                                                                                                                                                         |
| IEC 62153-4-4      | Metallic communication cable test methods - Part 4-4:<br>Electromagnetic compatibility (EMC) - Test method for<br>measuring of the screening attenuation as up to and above 3                                                                                                                                                                  | IEC 62305-1        | Protection against lightning - Part 1: General principles                                                                                                                                                                                                                                            |
|                    | GHz, triaxial method                                                                                                                                                                                                                                                                                                                           | IEC 62305-2        | Protection against lightning - Part 2: Risk management                                                                                                                                                                                                                                               |
| IEC 62153-4-5      | Metallic communication cables test methods - Part 4-5:<br>Electromagnetic compatibility (EMC) - Coupling or screening<br>attenuation - Absorbing clamp method                                                                                                                                                                                  | IEC 62305-3        | Protection against lightning - Part 3: Physical damage to structures and life hazard                                                                                                                                                                                                                 |

| IEC (continued)    |                                                                                                                                                                                                                                   | CISPR (continued) |                                                                                                                                                                                                 |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Document<br>Number | Title                                                                                                                                                                                                                             | Document          | Title                                                                                                                                                                                           |
| IEC 62305-4        | Protection against lightning - Part 4: Electrical and electronic systems within structures                                                                                                                                        | Number            |                                                                                                                                                                                                 |
| IEC 62310-2        | Static transfer systems (STS) - Part 2: Electromagnetic compatibility (EMC) requirements                                                                                                                                          | CISPR 16-2-4      | Specification for radio disturbance and immunity measuring<br>apparatus and methods - Part 2-4: Methods of measurement of<br>disturbances and immunity - Immunity measurements                  |
| IEC/TR 62482       | Electrical installations in ships - Electromagnetic compatibility<br>- Optimising of cable installations on ships - Testing method of<br>routing distance                                                                         | CISPR TR 16-2-5   | Specification for radio disturbance and immunity measuring<br>apparatus and methods - Part 2-5: In situ measurements for<br>disturbing emissions produced by physically large equipment         |
| CISPR              |                                                                                                                                                                                                                                   | CISPR TR 16-3     | Specification for radio disturbance and immunity measuring                                                                                                                                      |
| Document<br>Number | Title                                                                                                                                                                                                                             |                   | apparatus and methods - Part 3: CISPR technical reports                                                                                                                                         |
| CISPR 11           | Industrial, scientific and medical (ISM) radio-frequency equipment<br>- Electromagnetic disturbance characteristics - Limits and methods<br>of measurement                                                                        | CISPR TR 16-4-1   | Specification for radio disturbance and immunity measuring<br>apparatus and methods - Part 4-1: Uncertainties, statistics and<br>limit modelling - Uncertainties in standardized EMC tests      |
| CISPR 12           | Vehicles, boats and internal combustion engines - Radio<br>disturbance characteristics - Limits and methods of measurement<br>for the protection of off-board receivers                                                           | CISPR 16-4-2      | Specification for radio disturbance and immunity measuring<br>apparatus and methods - Part 4-2: Uncertainties, statistics and<br>limit modelling - Measurement instrumentation uncertainty      |
| CISPR 14-1         | Electromagnetic compatibility - Requirements for household<br>appliances, electric tools and similar apparatus - Part 1:<br>Emission                                                                                              | CISPR TR 16-4-3   | Specification for radio disturbance and immunity measuring apparatus and methods - Part 4-3: Uncertainties, statistics and                                                                      |
| CISPR 14-2         | Electromagnetic compatibility – Requirements for household<br>appliances, electric tools and similar apparatus – Part 2:<br>Immunity – Product family standard                                                                    |                   | limit modelling - Statistical considerations in the determination<br>of EMC compliance of mass-produced products                                                                                |
| CISPR 15           | Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment                                                                                                               | CISPR TR 16-4-4   | Specification for radio disturbance and immunity measuring<br>apparatus and methods - Part 4-4: Uncertainties, statistics and<br>limit modelling - Statistics of complaints and a model for the |
| CISPR 16-1-1       | Specification for radio disturbance and immunity measuring<br>apparatus and methods - Part 1-1: Radio disturbance and<br>immunity measuring apparatus - Measuring apparatus                                                       |                   | calculation of limits for the protection of radio services Specification for radio disturbance and immunity measuring                                                                           |
| CISPR 16-1-2       | Specification for radio disturbance and immunity measuring<br>apparatus and methods - Part 1-2: Radio disturbance and<br>immunity measuring apparatus - Coupling devices for conducted                                            | CISPR TR 16-4-5   | apparatus and methods - Part 4-5: Uncertainties, statistics<br>and limit modelling - Conditions for the use of alternative test<br>methods                                                      |
|                    | disturbance measurements<br>Specification for radio disturbance and immunity measuring                                                                                                                                            | CISPR 17          | Methods of measurement of the suppression characteristics of<br>passive EMC filtering devices                                                                                                   |
| CISPR 16-1-3       | apparatus and methods - Part 1-3: Radio disturbance and<br>immunity measuring apparatus - Ancillary equipment -<br>Disturbance power                                                                                              | CISPR TR 18-1     | Radio interference characteristics of overhead power lines and high-voltage equipment - Part 1: Description of phenomena                                                                        |
| CISPR 16-1-4       | Specification for radio disturbance and immunity measuring<br>apparatus and methods - Part 1-4: Radio disturbance and<br>immunity measuring apparatus - Antennas and test sites for<br>radiated disturbance measurements          | CISPR TR 18-2     | Radio interference characteristics of overhead power lines and<br>high-voltage equipment - Part 2: Methods of measurement and<br>procedure for determining limits                               |
| CISPR 16-1-5       | Specification for radio disturbance and immunity measuring<br>apparatus and methods - Part 1-5: Radio disturbance and<br>immunity measuring apparatus - Antenna calibration sites and<br>reference test sites for 5 MHz to 18 GHz | CISPR TR 18-3     | Radio interference characteristics of overhead power lines and<br>high-voltage equipment - Part 3: Code of practice for minimizing<br>the generation of radio noise                             |
| CISPR 16-1-6       | Specification for radio disturbance and immunity measuring<br>apparatus and methods - Part 1-6: Radio disturbance and<br>immunity measuring apparatus - EMC antenna calibration                                                   | CISPR 20          | Sound and television broadcast receivers and associated<br>equipment - Immunity characteristics - Limits and methods of<br>measurement (To be withdrawn in 2020)                                |
| CISPR 16-2-1       | Specification for radio disturbance and immunity measuring<br>apparatus and methods - Part 2-1: Methods of measurement<br>of disturbances and immunity - Conducted disturbance                                                    | CISPR 24          | Information technology equipment - Immunity characteristics -<br>Limits and methods of measurement (To be withdrawn in 2020)                                                                    |
| CISPR 16-2-2       | measurements<br>Specification for radio disturbance and immunity measuring<br>apparatus and methods - Part 2-2: Methods of measurement of                                                                                         | CISPR 25          | Vehicles, boats and internal combustion engines - Radio<br>disturbance characteristics - Limits and methods of measurement<br>for the protection of on-board receivers                          |
| CITIC TO L'L       | disturbances and immunity - Measurement of disturbance power<br>Specification for radio disturbance and immunity measuring                                                                                                        | CISPR 32          | Electromagnetic compatibility of multimedia equipment –<br>Emission requirements                                                                                                                |
| CISPR 16-2-3       | apparatus and methods - Part 2-3: Methods of measurement<br>of disturbances and immunity - Radiated disturbance<br>measurements                                                                                                   | CISPR 35          | Electromagnetic compatibility of multimedia equipment -<br>Immunity requirements                                                                                                                |
|                    |                                                                                                                                                                                                                                   |                   |                                                                                                                                                                                                 |

### **USEFUL EMC TESTING REFERENCES**

#### **RECOMMENDED BOOKS & JOURNALS**

#### André and Wyatt

EMI Troubleshooting Cookbook for Product Designers SciTech Publishing, 2014.

Includes chapters on product design and EMC theory & measurement. A major part of the content includes how to troubleshoot and mitigate all common commercial EMC test failures.

#### Archambeault

PCB Design for Real-World EMI Control Kluwer Academic Publishers, 2002.

#### Bogatin

Signal & Power Integrity - Simplified Prentice-Hall, 2018 (3rd Edition). Great coverage of signal and power integrity from a fields viewpoint.

#### Hall, Hall, and McCall

High-Speed Digital System Design - A Handbook of Interconnect Theory and Design Practices Wiley, 2000.

#### Joffe and Lock

Grounds For Grounding

Wiley, 2010.

This huge book includes way more topics on product design than the title suggests. Covers all aspects of grounding and shielding for products, systems, and facilities.

#### Johnson and Graham

High-Speed Digital Design - A Handbook of Black Magic Prentice-Hall, 1993.

Practical coverage of high speed digital signals and measurement.

#### Johnson and Graham

High-Speed Signal Propagation - Advanced Black Magic Prentice-Hall, 2003.

Practical coverage of high speed digital signals and measurement.

#### **Kimmel and Gerke**

Electromagnetic Compatibility in Medical Equipment IEEE Press, 1995. Good general product design information.

#### Mardiguian

EMI Troubleshooting Techniques McGraw-Hill, 2000. Good coverage of EMI troubleshooting.

#### Mardiguian

Controlling Radiated Emissions by Design Springer, 2016. Good content on product design for compliance.

#### Montrose

EMC Made Simple Montrose Compliance Services, 2014. The content includes several important areas of EMC theory and product design, troubleshooting, and measurement.

#### Morrison

Digital Circuit Boards - Mach 1 GHz Wiley, 2012. Important concepts of designing high frequency circuit boards from a fields viewpoint.

#### Morrison

Grounding And Shielding - Circuits and Interference Wiley, 2016 (6th Edition). The classic text on grounding and shielding with up to date content on how RF energy flows through circuit boards.

#### Morrison

Fast Circuit Boards

Wiley, 2018.

Morrison explains how signals propagate via transmission lines and why it's so important to include reference planes for every signal layer.

#### Ott

Electromagnetic Compatibility Engineering

Wiley, 2009.

The "bible" on EMC measurement, theory, and product design.

#### Paul

Introduction to Electromagnetic Compatibility

Wiley, 2006 (2nd Edition).

The one source to go to for an upper-level course on EMC theory.

EMC TESTING

### AUTOMOTIVE ELECTROMAGNETIC COMPATIBILITY (EMC) STANDARDS

The following list of automotive EMC standards was developed by Dr. Todd Hubing, Professor Emeritus of Clemson University Vehicular Electronics Lab (https://cecas.clemson.edu/cvel/emc/). A few of these standards have been made public and are linked below, but many others are considered company confidential and are only available to approved automotive vendors or test equipment manufacturers.

While several standards are linked on this list, an internet search may help locate additional documents that have been made public. Permission to republish has been approved.

| CISPR (Automotive Emissions Requirements) |                                                                                                                                                                                                                                                                                    |  |  |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Document<br>Number                        | Title                                                                                                                                                                                                                                                                              |  |  |
| CISPR 12                                  | Vehicles, boats, and internal combustion engine driven devices<br>– Radio disturbance characteristics – Limits and methods of<br>measurement for the protection of receivers except those installed<br>in the vehicle/boat/device itself or in adjacent vehicles/boats/<br>devices |  |  |
| CISPR 25                                  | Radio disturbance characteristics for the protection of receivers<br>used on board vehicles, boats, and on devices – Limits and<br>methods of measurement                                                                                                                          |  |  |
|                                           | ISO (Automotive Immunity Requirements)                                                                                                                                                                                                                                             |  |  |
| Document<br>Number                        | Title                                                                                                                                                                                                                                                                              |  |  |
| ISO 7637-1                                | Road vehicles – Electrical disturbances from conduction and<br>coupling – Part 1: Definitions and general considerations                                                                                                                                                           |  |  |
| ISO 7637-2                                | Road vehicles – Electrical disturbances from conduction and<br>coupling – Part 2: Electrical transient conduction along supply lines<br>only                                                                                                                                       |  |  |
| ISO 7637-3                                | Road vehicles – Electrical disturbance by conduction and coupling<br>– Part 3: Vehicles with nominal 12 V or 24 V supply voltage<br>– Electrical transient transmission by capacitive and inductive<br>coupling via lines other than supply lines                                  |  |  |
| ISO/TR<br>10305-1                         | Road vehicles – Calibration of electromagnetic field strength<br>measuring devices – Part 1: Devices for measurement of<br>electromagnetic fields at frequencies > 0 Hz                                                                                                            |  |  |
| ISO/TR<br>10305-2                         | Road vehicles – Calibration of electromagnetic field strength<br>measuring devices – Part 2: IEEE standard for calibration of<br>electromagnetic field sensors and probes, excluding antennas,<br>from 9 kHz to 40 GHz                                                             |  |  |
| ISO 10605                                 | Road vehicles – Test methods for electrical disturbances from<br>electrostatic discharge                                                                                                                                                                                           |  |  |
| ISO/TS<br>14907-1                         | Road transport and traffic telematics – Electronic fee collection –<br>Test procedures for user and fixed equipment – Part 1: Description<br>of test procedures                                                                                                                    |  |  |
| ISO/TS<br>14907-2                         | Road transport and traffic telematics – Electronic fee collection – Test<br>procedures for user and fixed equipment – Part 2: Conformance test<br>for the onboard unit application interface                                                                                       |  |  |
| ISO/TS<br>21609                           | Road vehicles – (EMC) guidelines for installation of aftermarket<br>radio frequency transmitting equipment                                                                                                                                                                         |  |  |
| ISO 11451-1                               | Road vehicles – Vehicle test methods for electrical disturbances<br>from narrowband radiated electromagnetic energy – Part 1:<br>General principles and terminology                                                                                                                |  |  |

|                    | ISO (Automotive Immunity Requirements) continued                                                                                                                                                               |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Document<br>Number | Title                                                                                                                                                                                                          |
| ISO 11451-2        | Road vehicles – Vehicle test methods for electrical disturbances<br>from narrowband radiated electromagnetic energy – Part 2: Off-<br>vehicle radiation sources                                                |
| ISO 11451-3        | Road vehicles – Electrical disturbances by narrowband radiated<br>electromagnetic energy – Vehicle test methods – Part 3: On-board<br>transmitter simulation                                                   |
| ISO 11451-4        | Road vehicles – Vehicle test methods for electrical disturbances<br>from narrowband radiated electromagnetic energy – Part 4: Bulk<br>current injection (BCI)                                                  |
| ISO 11452-1        | Road vehicles – Component test methods for electrical disturbance<br>from narrowband radiated electromagnetic energy – Part 1:<br>General principles and terminology                                           |
| ISO 11452-2        | Road vehicles – Component test methods for electrical disturbance<br>from narrowband radiated electromagnetic energy – Part 2:<br>Absorber-lined shielded enclosure                                            |
| ISO 11452-3        | Road vehicles – Component test methods for electrical disturbance<br>from narrowband radiated electromagnetic energy – Part 3:<br>Transverse electromagnetic mode (TEM) cell                                   |
| ISO 11452-4        | Road vehicles – Component test methods for electrical disturbance<br>from narrowband radiated electromagnetic energy – Part 4: Bulk<br>current injection (BCI)                                                 |
| ISO 11452-5        | Road vehicles – Component test methods for electrical disturbance<br>from narrowband radiated electromagnetic energy – Part 5:<br>Stripline                                                                    |
| ISO 11452-7        | Road vehicles – Component test methods for electrical disturbance<br>from narrowband radiated electromagnetic energy – Part 7: Direc<br>radio frequency (RF) power injection                                   |
| <u>ISO 11452-8</u> | Road vehicles – Component test methods for electrical disturbance<br>from narrowband radiated electromagnetic energy – Part 8:<br>Immunity to magnetic fields                                                  |
| ISO 11452-10       | Road vehicles – Component test methods for electrical disturbance<br>from narrowband radiated electromagnetic energy – Part 10:<br>Immunity to conducted disturbances in the extended audio<br>frequency range |
| ISO 11452-11       | Road vehicles – Component test methods for electrical disturbance<br>from narrowband radiated electromagnetic energy – Part 11:<br>Reverberation chamber                                                       |
| ISO 13766          | Earth-moving machinery – Electromagnetic compatibility                                                                                                                                                         |

|                    | SAE (Automotive Emissions and Immunity)                                                                                                                                   |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Document<br>Number | Title                                                                                                                                                                     |
| J1113/1            | Electromagnetic Compatibility Measurement Procedures and Limits<br>for Components of Vehicles, Boats (Up to 15 M), and Machines<br>(Except Aircraft) (50 Hz to 18 Ghz)    |
| J1113/2            | Electromagnetic Compatibility Measurement Procedures and Limits<br>for Vehicle Components (Except Aircraft)–Conducted Immunity, 15<br>Hz to 250 kHz–All Leads             |
| J1113/3            | Conducted Immunity, 250 kHz to 400 MHz, Direct Injection of<br>Radio Frequency (RF) Power (Cancelled August 2010)                                                         |
| J1113/4            | Immunity to Radiated Electromagnetic Fields-Bulk Current Injection<br>(BCI) Method                                                                                        |
| J1113/11           | Immunity to Conducted Transients on Power Leads                                                                                                                           |
| J1113/12           | Electrical Interference by Conduction and Coupling – Capacitive<br>and Inductive Coupling via Lines Other than Supply Lines                                               |
| J1113/13           | Electromagnetic Compatibility Measurement Procedure for Vehicle<br>Components – Part 13: Immunity to Electrostatic Discharge                                              |
| J1113/21           | Electromagnetic Compatibility Measurement Procedure for Vehicle<br>Components – Part 21: Immunity to Electromagnetic Fields, 30<br>MHz to 18 GHz, Absorber-Lined Chamber  |
| J1113/24           | Immunity to Radiated Electromagnetic Fields; 10 kHz to 200<br>MHz–Crawford TEM Cell and 10 kHz to 5 GHz–Wideband TEM Cell<br>(Cancelled August 2010)                      |
| J1113/26           | Electromagnetic Compatibility Measurement Procedure for Vehicle<br>Components – Immunity to AC Power Line Electric Fields                                                 |
| J1113/27           | Electromagnetic Compatibility Measurements Procedure for Vehicle<br>Components – Part 27: Immunity to Radiated Electromagnetic<br>Fields – Mode Stir Reverberation Method |
| J1113/28           | Electromagnetic Compatibility Measurements Procedure for Vehicle<br>Components-Part 28–Immunity to Radiated Electromagnetic Fields–<br>Reverberation Method (Mode Tuning) |
| J1113/42           | Electromagnetic Compatibility–Component Test Procedure–Part 42–<br>Conducted Transient Emissions (Cancelled Dec 2010, Superseded<br>by ISO 7637-2)                        |
| J1752/1            | Electromagnetic Compatibility Measurement Procedures for<br>Integrated Circuits-Integrated Circuit EMC Measurement Procedures-<br>General and Definition                  |
| J1752/2            | Measurement of Radiated Emissions from Integrated Circuits –<br>Surface Scan Method (Loop Probe Method) 10 MHz to 3 GHz                                                   |
| J1752/3            | Measurement of Radiated Emissions from Integrated Circuits –<br>TEM/Wideband TEM (GTEM) Cell Method; TEM Cell (150 kHz to 1<br>GHz), Wideband TEM Cell (150 kHz to 8 GHz) |
| J551/5             | Performance Levels and Methods of Measurement of Magnetic and<br>Electric Field Strength from Electric Vehicles, Broadband, 9 kHz To<br>30 MHz                            |
| J551/11            | Vehicle Electromagnetic Immunity–Off-Vehicle Source (Cancelled<br>March 2010)                                                                                             |

| SAE (Automotive Emissions and Immunity) continued |                                                                                                                                                                                                                                                             |  |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Document<br>Number                                | Title                                                                                                                                                                                                                                                       |  |
| J551/12                                           | Vehicle Electromagnetic Immunity–On-Board Transmitter<br>Simulation (Cancelled August 2009)                                                                                                                                                                 |  |
| J551/13                                           | Vehicle Electromagnetic Immunity–Bulk Current Injection<br>(Cancelled August 2009)                                                                                                                                                                          |  |
| J551/15                                           | Vehicle Electromagnetic Immunity-Electrostatic Discharge (ESD)                                                                                                                                                                                              |  |
| J551/16                                           | Electromagnetic Immunity – Off-Vehicle Source (Reverberation<br>Chamber Method) – Part 16 – Immunity to Radiated<br>Electromagnetic Fields                                                                                                                  |  |
| J551/17                                           | Vehicle Electromagnetic Immunity – Power Line Magnetic Fields                                                                                                                                                                                               |  |
| J1812                                             | Function Performance Status Classification for EMC Immunity<br>Testing                                                                                                                                                                                      |  |
| J2628                                             | Characterization-Conducted Immunity                                                                                                                                                                                                                         |  |
| J2556                                             | Radiated Emissions (RE) Narrowband Data Analysis–Power<br>Spectral Density (PSD)                                                                                                                                                                            |  |
|                                                   | GM                                                                                                                                                                                                                                                          |  |
| Document<br>Number                                | Title                                                                                                                                                                                                                                                       |  |
| GMW3091                                           | General Specification for Vehicles, Electromagnetic Compatibility<br>(EMC)-Engl; Revision H; Supersedes GMI 12559 R and GMI 12559 V                                                                                                                         |  |
| GMW3097                                           | General Specification for Electrical/Electronic Components<br>and Subsystems, Electromagnetic Compatibility-Engl; Revision<br>H; Supersedes GMW12559, GMW3100, GMW12002R AND<br>GMW12002V                                                                   |  |
| GMW3103                                           | General Specification for Electrical/Electronic Components<br>and Subsystems, Electromagnetic Compatibility Global EMC<br>Component/Subsystem Validation Acceptance Process-Engl;<br>Revision F; Contains Color; Replaces GMW12003, GMW12004 and<br>GMW3106 |  |
|                                                   | Ford                                                                                                                                                                                                                                                        |  |
| Document<br>Number                                | Title                                                                                                                                                                                                                                                       |  |
| EMC-<br>CS-2009.1                                 | Component EMC Specification EMC-CS-2009.1                                                                                                                                                                                                                   |  |
| FORD F-2                                          | Electrical and Electronics System Engineering                                                                                                                                                                                                               |  |
| FORD WSF-<br>M22P5-A1                             | Printed Circuit Boards, PTF, Double Sided, Flexible                                                                                                                                                                                                         |  |
|                                                   | Daimler AG                                                                                                                                                                                                                                                  |  |
| Document<br>Number                                | Title                                                                                                                                                                                                                                                       |  |
| DC-10614                                          | EMC Performance Requirements – Components                                                                                                                                                                                                                   |  |
| DC-10615                                          | Electrical System Performance Requirements for Electrical and Electronic Components                                                                                                                                                                         |  |
| DC-11224                                          | EMC Performance Requirements – Components                                                                                                                                                                                                                   |  |
| DC-11225                                          | EMC Supplemental Information and Alternative Component<br>Requirements                                                                                                                                                                                      |  |

| Othe                     | er Automotive Manufacturers                                     | Oth                     | er Automotive Manufacturers                                                 |
|--------------------------|-----------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------|
| Audi TL 82466            | Electrostatic Discharge                                         | Smart DE10005B          | EMC Requirements (electric aggregate and                                    |
| BMW 600 13.0             | Electric- / Electronic components in cars                       |                         | electronics in cars)                                                        |
| BMW GS 95002             | Electromagnetic Compatibility (EMC) Requirements and Tests      | Toyota TSC7001G         | Engineering Standard (electric noise of electronic devices)                 |
| BMW GS 95003-2           | Electric- / Electronic assemblies in motor vehicles             | Toyota TSC7001G-5.1     | Power Supply Voltage Characteristic Test                                    |
| Chrysler PF 9326         | Electrical electronic modules and motors                        | Toyota TSC7001G-5.2     | Field Decay Test                                                            |
| ,                        |                                                                 | Toyota TSC7001G-5.3     | Floating Ground Test                                                        |
| FIAT 9.90110             | Electric and electronic devices for motor vehicles              | Toyota TSC7001G-5.4     | Induction Noise Resistance                                                  |
| Freightliner 49-00085    | EMC Requirements                                                | Toyota TSC7001G-5.5.3   | Load Dump Test-1                                                            |
| Honda 3838Z-S5AA-L000    | Noise Simulation Test                                           | Toyota TSC7001G-5.5.4   | Load Dump Test-2                                                            |
| Honda 3982Z-SDA-0030     | Battery Simulation Test                                         | Toyota TSC7001G-5.5.5   | Load Dump Test-3                                                            |
| Hyundai/Kia ES 39110-00  | EMC Requirements                                                | Toyota TSC7001G-5.6     | Over Voltage Test                                                           |
| Hyundai/Kia ES-95400-10  | Battery Simulation Tests                                        |                         | •                                                                           |
| Hyundai/Kia ES 96100-01  | EMC Requirements                                                | Toyota TSC7001G-5.7.3   | Ignition Pulse (Battery Waveforms) Test-1                                   |
| IVECO 16-2103            | EMC Requirements                                                | Toyota TSC7001G-5.7.4   | Ignition Pulse (Battery Waveforms) Test-2                                   |
| Lotus 17.39.01           | Lotus Engineering Standard: Electromagnetic<br>Compatibility    | Toyota TSC7001G-5.8     | Reverse Voltage                                                             |
| Mack Trucks 606GS15      | EMC Requirements                                                | Toyota TSC7006G-4.4.2   | Wide Band-Width Antenna Nearby Test (0.4 to 2<br>GHz)                       |
| MAN 3285                 | EMC Requirements                                                |                         | 6112)                                                                       |
| Mazda MES PW 67600       | Automobile parts standard (electronic devices)                  | Toyota TSC7006G-4.4.3   | Radio Equipment Antenna nearby Test (28 MHz                                 |
| Mercedes A 211 000 42 99 | Instruction specification of test method for E/E-<br>components | Toyota TSC7006G-4.4.4   | Mobile Phone Antenna Nearby Test (835 MHz                                   |
| Mercedes AV EMV          | Electric aggregate and electronics in cars                      | Toyota TSC7018G         | Static Electricity Test                                                     |
|                          | EMC requirements and tests of E/E-systems                       | Toyota TSC7025G-5       | TEM Cell Test (1 to 400 MHz)                                                |
| Mercedes MBN 10284-2     | (component test procedures)                                     | Toyota TSC7025G-6       | Free Field Immunity Test (20 MHz to 1 GHz AM, 0.8 to 2 GHz PM)              |
| Mercedes MBN 22100-2     | Electric / electronic elements, devices in trucks               | Toyota TSC7025G-7       | Strip Line Test (20 - 400 MHz)                                              |
| Mitsubishi ES-X82010     | General specification of environment tests on                   | Toyota TSC7026G-3.4     | Narrow Band Emissions                                                       |
|                          | automotive electronic equipment                                 | Toyota TSC7203G         | Voltage Drop / Micro Drops                                                  |
| Nissan 28401 NDSO2       | EMC Requirements (instruction concerning vehicle                | Toyota TSC7508G-3.3.1   | Conductive Noise in FM and TV Bands                                         |
|                          | and electrical)                                                 | Toyota TSC7508G-3.3.2   | Conductive noise in LW, AM and SW Bands                                     |
| Nissan 28400 NDSO3       | Low frequency surge resistance of electronic parts              | Toyota TSC7508G-3.3.3   | Radiated Noise in FM and TV Bands                                           |
| Nissan 28400 NDSO4       | Burst and Impulse Waveforms                                     | Toyota TSC7508G-3.3.4   | Radiated Noise in AM, SW, and LW Bands                                      |
| N: 20400 NDC07           | Immunity against low frequency surge (induction                 | Toyota TSC7203G         | Engineering standard (ABS-TRC computers)                                    |
| Nissan 28400 NDS07       | surge) of electronic parts                                      | Toyota TXC7315G         | Electrostatic Discharge (Gap Method)                                        |
| Peugeot B217110          | Load Dump Pulses                                                |                         | Electronic Component - Subsystem Electromagnet                              |
| Porsche AV EMC EN        | EMC Requirements                                                | Visteon ES-XU3F-1316-AA | Compatibility (EMC) Requirements and Test                                   |
| PSA B21 7090             | EMC Requirements (electric and electronics equipment)           | Volvo EMC Requirements  | Procedures<br>EMC requirements for 12V and 24V systems                      |
| PSA B21 7110             | EMC Requirements (electric and electronics                      | Volkswagen VW TL 801 01 | Electric and electronic components in cars                                  |
|                          | equipment)                                                      | Volkswagen VW TL 820 66 | Conducted Interference                                                      |
| Renault 36.00.400        | Physical environment of electrical and electronic equipments    | Volkswagen VW TL 821 66 | EMC requirements of electronic components - bull<br>current injection (BCI) |
| Renault 36.00.808        | EMC requirements (cars and electrical / electronic components)  | Volkswagen VW TL 823 66 | Coupled Interference on Sensor Cables                                       |
| Scania TB1400            | EMC Requirements                                                | Volkswagen VW TL 824 66 | Immunity Against Electrostatic Discharge                                    |
| Scania TB1700            | Load Dump Test                                                  | Volkswagen VW TL 965    | Short-Distance Interference Suppression                                     |

ITEM

# MILITARY RELATED DOCUMENTS & STANDARDS

The following references are not intended to be all inclusive, but rather a representation of available sources of additional information and point of contacts.

MIL-HDBK-235-1D Military Operational Electromagnetic Environment Profiles Part 1D General Guidance, 03 April 2018.

MIL-HDBK-237D Electromagnetic Environmental Effects and Spectrum Certification Guidance for the Acquisition Process, 20 May 2005. (Notice 1 Validation 04 April 2013)

MIL-HDBK-240A Hazards of Electromagnetic Radiation to Ordnance (HERO) Test Guide, 10 Mar 2011.

MIL-HDBK-263B Electrostatic Discharge Control Handbook for Protection of Electrical and Electronic Parts, Assemblies and Equipment (Excluding Electrically Initiated Explosive Devices), 31 Jul 1994.

MIL-HDBK-274A Electrical Grounding for Aircraft Safety, 14 Nov 2011. (Notice 1 Validation 16 August 2016)

MIL-HDBK-335 Management and Design Guidance Electromagnetic Radiation Hardness for Air Launched Ordnance Systems, Notice 4, 08 Jul 2008. (Notice 5 Cancellation 01 August 2013)

MIL-HDBK-419A Grounding, Bonding, and Shielding for Electronic Equipment and Facilities, 29 Dec 1987. (Notice 1 Validation 20 February 2014)

MIL-HDBK-454B General Guidelines for Electronic Equipment, 15 Apr 2007. (Notice 1 Validation 12 December 2012)

MIL-HDBK-1195, Radio Frequency Shielded Enclosures, 30 Sep 1988.

MIL-HDBK-2036 Preparation of Electronic Equipment Specifications, 1 November 1999

MIL-STD-188-124B Grounding, Bonding, and Shielding for Common Long Haul/Tactical Communications-Electronics Facilities and Equipment, 4 April 2013.

MIL-STD-220C Test Method Standard Method of Insertion Loss Measurement, 14 May 2009. (Notice 2 Validation 08 October 2019) MIL-STD-331D Fuze and Fuze Components, Environmental and Performance Tests for, 31 May, 2017.

MIL-STD-449D Radio Frequency Spectrum Characteristics, Measurement of, 22 Feb 1973. (Notice 1 18 May 1976, Notice 2 Validation 04 April 2013)

MIL-STD-461F Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment, 10 Dec 2007.

MIL-STD-461G Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment, 11 Dec 2015.

MIL-STD-464D Electromagnetic Environmental Effects Requirements for Systems, 24 Dec 2020.

MIL-STD-704F Aircraft Electric Power Characteristics, Change Notice 1, 05 December 2016.

MIL-STD-1275E Characteristics of 28 Volt DC Power Input to Utilization Equipment in Military Vehicles, 22 March 2013 (MIL-STD-1275F expected release in 2020)

MIL-STD-1310H Standard Practice for Shipboard Bonding, Grounding, and Other Techniques for Electromagnetic Compatibility Electromagnetic Pulse (EMP) Mitigation and Safety, 17 Sep 2009. (Notice 1 Validation 12 August 2014)

MIL-STD-1377 Effectiveness of Cable, Connector, and Weapon Enclosure Shielding and Filters in Precluding Hazards of EM Radiation to Ordnance; Measurement of, 20 Aug 1971.

MIL-STD-1399 Section 300B Interface Standard for Shipboard Systems, Electric Power, Alternating Current, Cancelled 25 September 2018.

MIL-STD-1399 Section 300 Part 2 Medium Voltage Electric Power, Alternating Current, 25 September 2018

### MILLIMETER WAVE APPLICATIONS AND PROMISE

**Mike Violette, P.E.** President, Washington Laboratories

Imagine a radio frequency wavelength about the thickness of your pinky nail. This is a new area for technology applications.

A growing area in spectrum development is exploding. For many decades, very high frequencies (millimeter waves) have been the playground of radio-astronomers to image our solar system, stars and galaxies. This space is "new" fertile ground for sensing and communications in terrestrial (and extra-terrestrial) use.

The millimeter wave space is opening up for these applications, which promise enormous multi-gigahertz bandwidths for innovation across many sectors.

Typically reserved for passive sensing of the mysteries of the Earth and our galactic environment, the 100+ GHz spectrum is, in a way, "off to the races." Radar applications for mobile devices (automobile and other) are being allocated on an increased basis. The applications are numerous, and the challenges are unique. Because of the physics of dealing with these high frequencies, the use of these frequencies is confined to very focused applications, requiring precision and tight control on propagation between the devices that transmit and receive mmWave energy.

In the industry, the mmWave Coalition (mmwavecoalition. org) works on these new areas, monitoring and focusing on the allocations mandated by The Federal Communications Commission (FCC) and other regulatory bodies. Tossed in the salad of interests are incumbent users of this spectrum (NASA, radio-astronomy users, research institutions as mentioned before) and a host of Earth- and space-based sensing systems.

What is tricky is the reasonable parsing of these new spectrum spaces. As terahertz (THz) applications are borne and deployed, there is a balance that must be considered for the use and protection of the incumbents without stifling innovation from other interests. This is doubly necessary as the existing and future roles of terahertz technologies include Earth observations of weather and climate.

The radiometry applications (sensing at a distance based on the "temperature" of the Earth's surface, as measured by wide-band sensors) are critical. Additional clutter and noise in the GHz frequencies can clog and distort the science that is necessary to predict winds, waves, ocean, Earth's surface temperature and other weather and physical phenomena that give eyes to what is happening on our planet. Something as mundane as the nightly weather report is dependent on good satellite data for small and large weather patterns that affect daily life, crop predictions, safety and incident prediction. Other applications use radiometers to predict surface winds, all important for naval and ocean-going navigation and planning (see: Tropical Rainfall Measurement Mission https://gpm.nasa.gov/missions/trmm). As NASA explains: "TRMM provided much needed information on rainfall and its associated heat release that helps to power the global atmospheric circulation that shapes both weather and climate. In coordination with other satellites in NASA's Earth Observing System."

- Various groups are very interested in this particularly large chunk of the spectrum. For the present, the FCC's allocations end at 90GHz and the radio frequency spectrum, challenged and fiercely protected by research and other groups, is being weighed as new applications arise.
- Members of the mmWave Coalition include several applications-based organizations that are learning to capitalize and expand on mmWave capabilities. One member, for instance, equipment manufacturer Virginia Diodes, can expand sensing and measurements and, with their extension modules can detect, measure and synthesize frequencies in excess of 1000 GHz, which is remarkable.

According to the commonly used equation, the wavelength of an RF signal is equal to c/f (speed of light divided by frequency), or  $300*10^{8}/1000X10^{9}$ . This means that the wavelengths are on the order of 0.3 millimeters, or about

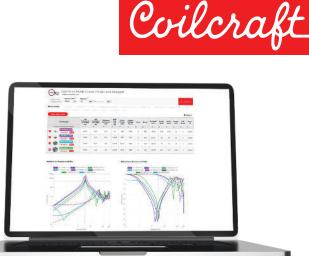
the thickness of your pinky nail. What is amazing is the high frequencies allow for multi-GHz wide bandwidths, which allow for tremendous gains in communication operating data rates.

With these very small wavelengths, the physical structure of antennas and associated waveguides are attendantly small (we are talking pin-head small), precisely machined and carefully aligned. Care is required for connecting waveguide structures — no dirt and grime and grit, or the game is off.

The real challenges arise in making and sensing these frequencies because a few hindrances need to be noted and properly dealt with, namely the directionality of these mmWaves and the propagation losses associated with these very high frequencies. In addition, the beamwidths of these high frequency phenomena are extremely tight. No longer can a large and lopey broadband antenna be used to measure this energy properly. Laser-like precision is necessary to collect and quantify these quantities. We have worked on a system that used a 275 GHz operating frequency to sense and image packages for safety and security measures. Automotive radar applications at ~60 GHz are now commonplace.

#### **PROPAGATION LOSSES**

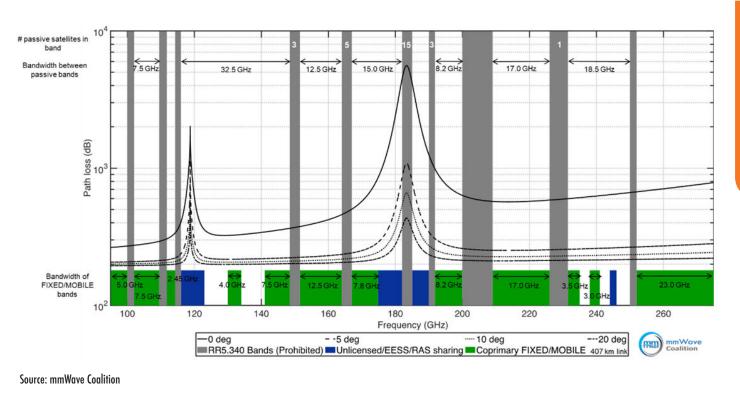
The propagation losses are extremely high, which limits the practical range for these applications. The Free-Space Propagation Losses (FSPL) are well-known. The FSPL are a function of frequency, fundamentally, and can be calculated according to the following equation:


#### FSPL = $20\log(d) + 20\log(f) + 20\log(4\pi/c) - G_{Tx} - G_{Rx}$

Where d is the distance, in meters, f is frequency in Hertz and  $G_{Tx}$  and  $G_{Rx}$  are the transmit and receive gain of the antennas, respectively. c is the speed of light in m/s and  $\pi$  is my favorite irrational constant.

All other terms aside, the driving function in the above equation is the frequency of the RF energy, so the loss monotonically increases with frequency. At 100 GHz, the losses are 40 dB higher than at 1 GHz, which is a significant increase in propagation loss. But there are derived benefits from this naturally occurring FSPL, namely, there are isolation losses that occur as a result and, in addition, the tight beamwidths tend to allow more isolation between devices that may be




Analyzer Tool



- Find high-performance, off-the-shelf common mode chokes that meet vour EMI/RFI filter requirements
- Search by impedance, attenuation, or inductance
- Analyze and compare up to 12 parts at a time, including common and differential mode impedance and attenuation vs. frequency graphs

Start your search @ coilcraft.com

EMC TESTING



sharing the same spectrum, thus, much of the communications and sensing applications are point-to-point and necessarily so.

There are naturally occurring losses in the atmosphere, due to water vapor absorption — and these losses are substantial (see the figure below, note the large losses at ~100 GHz and l85 GHz). This is not at all a "bad" thing because one can take advantage of these deep losses to put sensitive communications in those bands.

For laboratory applications, it is critical that measurement personnel understand these physical realities and the correct use of measurement instruments be well-applied. This demands that spectrum/receiver extension modules be correctly reasoned and applied. For example, most spectrum analyzer have baseband measurement input that can extend to 50GHz (or so). Above that frequency extension modules use mixer-based extensions that "use" the local oscillator (LO) of the analyzer and beat the incoming signal to be measured against various harmonics of the LO. This produces an input Intermediate Frequency (IF) that the analyzer can recognize and produce a display that, using conversion gains associated with the external mixer (from nominally 10 to 40 dB), can produce a calibrated response. Again, a little tricky, but not impossible.

As allocations increase, applications for mmWave are expanding. As the frequencies increase, the phenomena of RF communications begins to be more light-like and the crossover between RF and optics become less hazy.

Innovative companies, such as those associated with the mmWave Coalition, are working to implement a balanced approach to use of these high frequency/short wavelength physics.

For the immediate future, the allocations for these devices are going to be negotiated and settled.

Stay tuned.





### WIRELESS GROUPS & ORGANIZATIONS

#### MAJOR WIRELESS LINKEDIN GROUPS

- Wireless Telecommunications Worldwide
- Wireless and Telecom Industry Network
- Cellular, Wireless & Mobile Professionals
- Wireless Communications & Mobile Networks
- 802.11 Wireless Professionals
- Wireless Consultant
- Telecom & Wireless World

#### WIRELESS ASSOCIATIONS AND ORGANIZATIONS

### ALLIANCE FOR TELECOMMUNICATIONS INDUSTRY SOLUTIONS

#### https://www.atis.org/

As a leading technology and solutions development organization, the Alliance for Telecommunications Industry Solutions (ATIS) brings together the top global ICT companies to advance the industry's business priorities.

#### APCO INTERNATIONAL

#### https://www.apcointl.org

APCO International is the world's oldest and largest organization of public safety communications professionals and supports the largest U.S. membership base of any public safety association. It serves the needs of public safety communications practitioners worldwide — and the welfare of the general public as a whole — by providing complete expertise, professional development, technical assistance, advocacy and outreach.

### ALLIANCE FOR TELECOMMUNICATIONS INDUSTRY SOLUTIONS (ATIS)

#### http://www.atis.org

In a rapidly changing industry, innovation needs a home. ATIS is a forum where the information and communications technology (ICT) companies convene to find solutions to their most pressing shared challenges.

#### **BLUETOOTH SPECIAL INTEREST GROUP**

#### https://www.bluetooth.com

Join thousands of the world's most innovative companies already developing and influencing Bluetooth technology.

#### **BROADBAND FORUM**

#### https://www.broadband-forum.org/

The Broadband Forum is an industry-driven global standards development organization helping operators, application providers, and vendors deliver better, services-led broadband.

#### **COMPETITIVE CARRIERS ASSOCIATION (CCA)**

#### https://www.ccamobile.org/

CCA advocates on behalf of its members' interests and works to educate policymakers on the key issues that impact its members' ability to compete, survive, and thrive.

#### **CTIA - THE WIRELESS ASSOCIATION**

#### http://www.ctia.org

CTIA is an international nonprofit membership organization that has represented the wireless communications industry since 1984. The association's members include wireless carriers, device manufacturers, suppliers as well as apps and content companies.

### EUROPEAN TELECOMMUNICATIONS STANDARDS INSTITUTE (ETSI)

#### http://www.etsi.org

We produce globally applicable standards for Information & Communications Technologies including fixed, mobile, radio, broadcast, internet, aeronautical, and other areas.

#### GLOBAL MOBILE SUPPLIERS ASSOCIATION (GSA)

https://gsacom.com/about-gsa/

GSA is a not-for-profit industry organization representing companies across the worldwide mobile ecosystem who are engaged in the supply of infrastructure, semiconductors, test equipment, devices, applications and mobile support services.

#### **IEEE STANDARDS ASSOCIATION**

#### https://standards.ieee.org/

IEEE Standards Association (IEEE SA) is a leading consensus building organization that nurtures, develops and advances global technologies, through IEEE. It brings together a broad range of individuals and organizations from a wide range of technical and geographic points of origin to facilitate standards development and standards related collaboration.

### INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC)

#### https://www.iec.ch/homepage

Founded in 1906, the IEC is the world's leading organization for the preparation and publication of international standards for all electrical, electronic and related technologies. These are known collectively as "electrotechnology."

WIRELESS/5G/IOT

### INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO)

#### https://iso.org/home.html

ISO, the International Organization for Standardization, brings global experts together to agree on the best way of doing things – for anything from making a product to managing a process. As one of the oldest non-governmental international organizations, ISO has enabled trade and cooperation between people and companies the world over since 1946. The International Standards published by ISO serve to make lives easier, safer and better.

#### INTERNATIONAL TELECOMMUNICATION UNION (ITU)

#### https://www.itu.int/en/Pages/default.aspx

ITU is the United Nations specialized agency for information and communication technologies (ICTs). The Organization is made up of a membership of 193 Member States and more than 1000 companies, universities and international and regional organizations. Headquartered in Geneva, Switzerland, and with regional offices on every continent, ITU is the oldest agency in the UN family – connecting the world since the dawn of the telegraph in 1865.

#### INTERNET ENGINEERING TASK FORCE (IETF)

#### https://www.ietf.org/

IETF, founded in 1986, is the premier standards development organization (SDO) for the Internet. The IETF makes voluntary standards that are often adopted by Internet users, network operators, and equipment vendors, and it thus helps shape the trajectory of the development of the Internet. But in no way does the IETF control, or even patrol, the Internet.

#### NATIONAL ASSOCIATION OF BROADCASTERS (NAB) http://nab.org

NAB is the voice for the nation's radio and television broadcasters. As the premier trade association for broadcasters, NAB advances the interests of our members in federal government, industry and public affairs; improves the quality and profitability of broadcasting; encourages content and technology innovation; and spotlights the important and unique ways stations serve their communities.

### NATIONAL ASSOCIATION OF TOWER ERECTORS (NATE)

#### https://natehome.com/

NATE is a non-profit trade association providing a unified voice for tower erection, maintenance and service companies. NATE is headquartered in Watertown, South Dakota with a staff of fourteen people who administer to the day-to-day operations of the association. As a member driven association, NATE is led by its Board of Directors. These individuals come from all types and sizes of companies located throughout the United States.

#### RURAL WIRELESS ASSOCIATION (RWA)

#### https://ruralwireless.org/

RWA is a trade association representing rural wireless carriers who each serve fewer than 100,000 subscribers. RWA's members have joined together to speed delivery of new, efficient, and innovative wireless technologies to the populations of remote and underserved sections of the country.

#### SATELLITE INDUSTRY ASSOCIATION (SIA)

#### http://www.sia.org

SIA is a Washington D.C. based trade association representing the leading global satellite operators, service providers, manufacturers, launch services providers, and ground equipment suppliers.

### TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TIA)

#### http://www.tiaonline.org

TIA is the leading trade association representing the global information and communications technology (ICT) industry through standards development, policy initiatives, business opportunities, market intelligence and networking events. With support from hundreds of members, TIA enhances the business environment for companies involved in telecom, broadband, mobile wireless, information technology, networks, cable, satellite, unified communications, emergency communications, and the greening of technology.

#### Wi-Fi ALLIANCE

#### https://www.wi-fi.org/

Wi-Fi Alliance drives global Wi-Fi adoption and evolution through thought leadership, spectrum advocacy, and industry-wide collaboration. Their work includes the development of innovative technologies, requirements, and test programs that help ensure Wi-Fi provides users the interoperability, security, and reliability they have come to expect.

#### WIRELESS BROADBAND ALLIANCE (WBA)

#### https://wballiance.com/

WBA is the global organization that connects people with the latest Wi-Fi initiatives. Founded in 2003, the vision of the WBA is to drive seamless, interoperable service experiences via Wi-Fi within the global wireless ecosystem. WBA's mission is to enable collaboration between service providers, technology companies, cities, regulators and organizations to achieve that vision.

#### WIRELESS COMMUNICATIONS ALLIANCE (WCA)

#### https://wca.org/

WCA exists to enable collaboration between technology companies, solution and service providers, early adopters, and academia to drive the successful implementation of wireless products and services within the global wireless ecosystem.

#### WIRELESS INFRASTRUCTURE ASSOCIATION (WIA)

#### http://wia.org

The Wireless Infrastructure Association represents the businesses that develop, build, own, and operate the nation's wireless infrastructure.

#### WIRELESS INNOVATION FORUM

#### http://www.wirelessinnovation.org

WInnForum members are dedicated to advocating for the innovative use of spectrum and advancing radio technologies that support essential or critical communications worldwide. Through events, committee projects, and initiatives the Forum acts as the premier venue for its members to collaborate to achieve these objectives, providing opportunities to network with customers, partners and competitors, educate decision makers, develop and expand markets, and advance relevant technologies.

#### WIRELESS INTERNET SERVICE PROVIDERS ASSOCIATION (WISPA)

#### https://www.wispa.org/

WISPA – Broadband Without Boundaries was founded in 2004 to promote the development, advancement, and unification of the WISP industry, with WISP defined as "an Internet service provider that utilizes wireless, fiber optics, or other technologies to distribute broadband or related Internet Protocol-derived services."

#### WIMAX FORUM

#### https://wimaxforum.org/

The WiMAX Forum® is an industry-led, not-for-profit organization that certifies and promotes the compatibility and interoperability of broadband wireless products based upon IEEE Standard 802.16. The WiMAX Forum's primary goal is to accelerate the adoption, deployment and expansion of Wi-MAX, AeroMACS, and WiGRID technologies across the globe while facilitating roaming agreements, sharing best practices within its membership and certifying products.

#### WTA

#### https://w-t-a.org/

WTA is a member-driven association strengthening the ability of its members to provide affordable, advanced broadband and communications services in rural America through advocacy and education.

#### **ZIGBEE ALLIANCE**

#### csa-iot.org/all-solutions/zigbee/

Our innovative standards are custom-designed by industry experts to meet the specific market needs of businesses and consumers. These market leading standards give product manufacturers a straightforward way to help their customers gain greater control of, and even improve, everyday activities.

ITEM

### **USEFUL WIRELESS REFERENCES**

#### WIRELESS WORKING GROUPS

#### 802.11 Working Group

The 802.11 Working Group is responsible for developing wireless LAN standards that provide the basis for Wi-Fi. http://grouper.ieee.org/groups/802/11/

#### 802.15 Working Group

The 802.15 Working Group is responsible for developing wireless PAN standards that provide the basis for Bluetooth and ZigBee.

http://www.ieee802.org/15/

#### 802.16 Working Group

The 802.16 Working Group is responsible for developing wireless MAN standards that provide the basis for WiMAX. http://grouper.ieee.org/groups/802/16/

#### **Bluetooth SIG**

The Bluetooth SIG is responsible for developing wireless PAN specifications.

https://www.bluetooth.com

### Cellular Telecommunications and Internet Association (CTIA)

The CTIA represents cellular, personal communication services, mobile radio, and mobile satellite services over wireless WANs for service providers and manufacturers. http://www.ctia.org

#### Federal Communications Commission (FCC)

The FCC provides regulatory for RF systems in the U.S. https://www.fcc.gov

#### **GSM** Association

The GSM Association participates in the development of development of the GSM platform - holds the annual 3GSM World Congress.

http://www.gsmworld.com

#### Wi-Fi Alliance

The Wi-Fi Alliance develops wireless LAN ("Wi-Fi") specifications based on IEEE 802.11 standards and provides compliance testing of Wi-Fi products. http://www.wi-fi.org

#### WiMAX Forum

The WiMAX Forum develops wireless MAN standards based on IEEE 802.16 standards and provides compliance testing of WiMAX products. http://wimaxforum.org

#### ZigBee Alliance

The ZigBee Alliance develops standards for low-power wireless monitoring and control products. http://www.zigbee.org

#### **USEFUL WEBSITES**

#### **ARRL RFI Information**

http://www.arrl.org/radio-frequency-interference-rfi

Jim Brown has several very good articles on RFI, including: A Ham's Guide to RFI, Ferrites, Baluns, and Audio Interfacing.

www.audiosystemsgroup.com

#### FCC

http://www.fcc.gov

FCC, Interference with Radio, TV and Telephone Signals http://www.fcc.gov/guides/interference-defining-source

#### **IWCE Urgent Communications**

http://urgentcomm.com has multiple articles on RFI

#### Jackman, Robin, Measure Interference in Crowded Spectrum, Microwaves & RF Magazine, Sept. 2014. http://mwrf.com/test-measurement-analyzers/measure-in-

terference-crowded-spectrum

#### RFI Services (Marv Loftness) has some good information on RFI hunting techniques www.rfiservices.com

#### TJ Nelson, Identifying Source of Radio Interference Around the Home, 10/2007

http://randombio.com/interference.html

#### **USEFUL BOOKS**

#### The RFI Book (3rd edition) Gruber, Michael

ARRL, 2010.

#### AC Power Interference Handbook (2nd edition)

Loftness, Marv Percival Publishing, 2001.

#### Transmitter Hunting: Radio Direction Finding Simplified

Moell, Joseph and Curlee, Thomas TAB Books, 1987.

#### **USEFUL BOOKS** (CONTINUED)

Interference Handbook Nelson, William Radio Publications, 1981.

Electromagnetic Compatibility Engineering Ott, Henry W. John Wiley & Sons, 2009.

Platform Interference in Wireless Systems - Models, Measurement, and Mitigation Slattery, Kevin, and Skinner, Harry

Newnes, 2008.

Spectrum and Network Measurements, (2nd Edition) Witte, Robert SciTech Publishing, 2014.

Radio Frequency Interference (RFI) Pocket Guide Wyatt and Gruber SciTech Publishing, 2015.

#### **USEFUL FORMULAS** AND REFERENCE TABLES

| E-Field Levels versus Transmitter Pout |           |           |            |  |  |
|----------------------------------------|-----------|-----------|------------|--|--|
| Pout (W)                               | V/m at 1m | V/m at 3m | V/m at 10m |  |  |
| 1                                      | 5.5       | 1.8       | 0.6        |  |  |
| 5                                      | 12.3      | 4.1       | 1.2        |  |  |
| 10                                     | 17.4      | 5.8       | 1.7        |  |  |
| 25                                     | 27.5      | 9.2       | 2.8        |  |  |
| 50                                     | 38.9      | 13.0      | 3.9        |  |  |
| 100                                    | 55.0      | 18.3      | 5.5        |  |  |
| 1000                                   | 173.9     | 58.0      | 17.4       |  |  |

Assuming the antenna gain is numerically 1, or isotropic, and the measurement is in the far field and greater than 100 MHz.

#### Using Decibels (dB)

- The decibel is always a ratio...
- Gain =  $P_{out}/P_{in}$ , where P = power
- Gain(dB) =  $10\log(P_{out} / P_{in})$ , where P = power
- Gain(dB) =  $20\log(V_{out}/V_{in})$ , where V = voltage • Gain(dB) =  $20\log(I_{out}/I_{in})$ , where I = current

#### **Power Ratios**

3 dB = double (or half) the power10 dB = 10 X (or / 10) the power

#### **Voltage/Current Ratios**

6 dB = double (or half) the voltage/current 20 dB - 10X (or /10) the voltage/current

Multiplying power by a factor of 2 corresponds to a 3 dB increase in power. This also corresponds to a 6 dB increase in voltage or current.

| Commonly Used Power Ratios (dB) |         |                    |  |  |
|---------------------------------|---------|--------------------|--|--|
| Ratio                           | Power   | Voltage or Current |  |  |
| 0.1                             | -10 dB  | -20 dB             |  |  |
| 0.2                             | -7.0 dB | -14.0 dB           |  |  |
| 0.3                             | -5.2 dB | -10.5 dB           |  |  |
| 0.5                             | -3.0 dB | -6.0 dB            |  |  |
| 1                               | 0 dB    | 0 dB               |  |  |
| 2                               | 3.0 dB  | 6.0 dB             |  |  |
| 3                               | 4.8 dB  | 9.5 dB             |  |  |
| 5                               | 7.0 dB  | 14.0 dB            |  |  |
| 7                               | 8.5 dB  | 16.9 dB            |  |  |
| 8                               | 9.0 dB  | 18.1 dB            |  |  |
| 9                               | 9.5 dB  | 19.1 dB            |  |  |
| 10                              | 10 dB   | 20 dB              |  |  |
| 20                              | 13.0 dB | 26.0 dB            |  |  |
| 30                              | 14.8 dB | 29.5 dB            |  |  |
| 50                              | 17.0 dB | 34.0 dB            |  |  |
| 100                             | 20 dB   | 40 dB              |  |  |
| 1,000                           | 30 dB   | 60 dB              |  |  |
| 1,000,000                       | 60 dB   | 120 dB             |  |  |

Multiplying power by a factor of 10 corresponds to a 10 dB increase in power. Multiplying a voltage or current by 10 is a 20 dB increase. Dividing by a factor of 10 corresponds to a 10 dB reduction in power, or 20 dB for voltage and current.

WIRELESS/5G/IOT

WIRELESS/5G/IOT

#### COMMON WIRELESS FREQUENCY BANDS (LINKS)

GSM Bands: https://en.wikipedia.org/wiki/GSM\_frequency\_bands

UMTS Bands: https://en.wikipedia.org/wiki/UMTS\_frequency\_bands

LTE Bands: https://en.wikipedia.org/wiki/LTE\_frequency\_bands

#### MMDS:

https://en.wikipedia.org/wiki/Multichannel\_Multipoint\_ Distribution\_Service

V Band (40 to 75 GHz): https://en.wikipedia.org/wiki/V\_band

#### DECT and DECT 6.0

#### (wireless phones and baby monitors):

https://en.wikipedia.org/wiki/Digital\_Enhanced\_Cordless\_ Telecommunications

#### Comparison of wireless internet standards:

https://en.wikipedia.org/wiki/Comparison\_of\_mobile\_ phone\_standards

#### Wi-Fi Protocols (From Intel):

http://www.intel.com/content/www/us/en/support/network-and-i-o/wireless-networking/000005725.html

#### LINKS TO MANUFACTURER'S WHITE PAPERS

### Interference Hunting With The R&S FSH (Rohde & Schwarz):

https://www.rohde-schwarz.com/us/applications/ interference-hunting-with-r-s-fsh-applicationnote\_56280-77764.html

#### Interference Hunting / Part 1 (Tektronix):

http://www.tek.com/blog/interference-hunting-part-1-4-getinsight-you-need-see-interference-crowded-spectrum

#### Interference Hunting / Part 2 (Tektronix):

https://in.tek.com/blog/interference-hunting-part-2-4-how-often-interference-happening

#### Interference Hunting / Part 3 (Tektronix):

http://www.tek.com/blog/interference-hunting-part-3-4-usemask-search-automatically-discover-when-interferencehappenin

#### Interference Hunting / Part 4 (Tektronix):

https://www.tek.com/en/blog/interference-huntingpart-4-4-storing-and-sharing-captures-interferencehunter%E2%80%99s-safety-net



### USE OF FERRITE-LOADED ABSORBER TO REDUCE WIRELESS SELF-INTERFERENCE

#### Kenneth Wyatt

Wyatt Technical Services

Self-generated EMI from DC-DC converters, as well as digital and video processing has long plagued designers of wireless and IoT devices, especially since physical sizes have trended smaller. The broadband harmonic content often extends up through 1.5 GHz, which includes most wireless protocols, cellular LTE and GPS/GNSS bands.

One new mitigation technique I've been trying lately is the use of ferrite-loaded RF absorber. These come in flexible sheets of varying thickness with adhesive on one side. In my past designs of microwave modules, these could be stuck to the inside of shield covers to reduce structural resonances due to cavities.

Today, I'm starting to use them to reduce the electromagnetic field level of IC packages and flex cables. The material is made by several manufacturers, such as 3M, Parker-Chomerics, NEC and Würth Elektronik. They are primarily designed as near field communication (NFC) shields or microwave absorbers.

Often, I need something effective in the LTE cellular frequency range of 650 to 860 MHz and it seems very few absorber materials are very effective in this range. I needed a quick way to characterize the many absorber materials I had at hand.

Unfortunately, manufacturers of these materials rarely show the absorptive properties versus frequency, but rather the permeability curves. While higher permeability materials usually mean better shielding at lower frequencies, EMC engineers are more interested in specific absorption (in dB) versus frequency, such information makes it easier to specify the correct material, depending on the application.

Würth Elektronik has a useful application note, ANP022, "Selection and Characteristics of WE-FSFS (Flexible Sintered Ferrite Sheet)" that shows a simple measurement technique for determining the insertion loss versus frequency (Reference 1). I've made these absorption measurements and present my results here. *Figure 1* shows the tested samples.



Figure 1: My collection included a variety of ferrite absorber sheets from different manufacturers

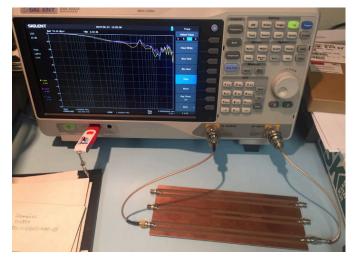



Figure 2: The test setup showing the spectrum analyzer and tracking generator connected to each end of the 50-0hm transmission line

The overall test setup was simple enough, just requiring a spectrum analyzer with tracking generator (Siglent SSA3032X) and a 50-Ohm microstrip transmission line

(*Figure 2*). Once the transmission line is normalized as a straight line to eliminate basic transmission line variances with frequency, we merely place and hold the sample absorber on top of the microstrip. Generally, I measured from 100 MHz to 3.2 GHz (*Figure 3*).

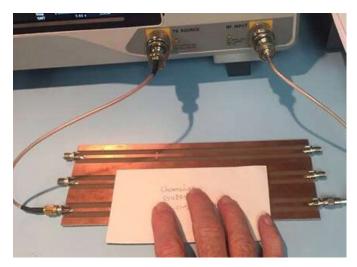



Figure 3: Measuring ferrite absorber sheets using the microstrip attenuation method

Flexible ferrite absorber sheets are generally good for only 5 to 20 dB absorption, but let's see what the measurements reveal. The Arc-Tech WXA-series had excellent insertion loss of 10 to

40 dB above 1 GHz and should prove useful for applications in the cellular, GPS, and 2.4 GHz Wi-Fi bands (*Figure 4*). Unfortunately, Arc-Tech closed their business and transferred the technology to others and this material is no longer available through U.S. distributors.

The Chomerics material is unique in that it has substantial absorption properties starting around 20 MHz and increasing to 20 dB insertion loss above 1 GHz. As you can see, I had to greatly expand the frequency span in order to capture the whole picture (*Figure 5*).

NEC has their R4N(01) material that has good absorbance in the cellular through GPS frequencies (blue trace in *Figure 6*).

#### CASE STUDY - BODY-WORN WIRELESS DEVICE

I had a chance to use this type material on a body-worn device a few years ago. The product included cellular, Wi-Fi, Bluetooth and GPS. It also included a video camera that produced a high amount of EMI on its connecting flex cable. During characterization measurements, I identified the DRAM, power management IC (PMIC) and video cable as the highest energy sources of interference. This self-interference was blocking reception in LTE Band 5 (and others).

Placing small squares of WAVE-X 20 absorber on top of the DRAM, PMIC and video cable (red "X"s in *Figure 7*) were

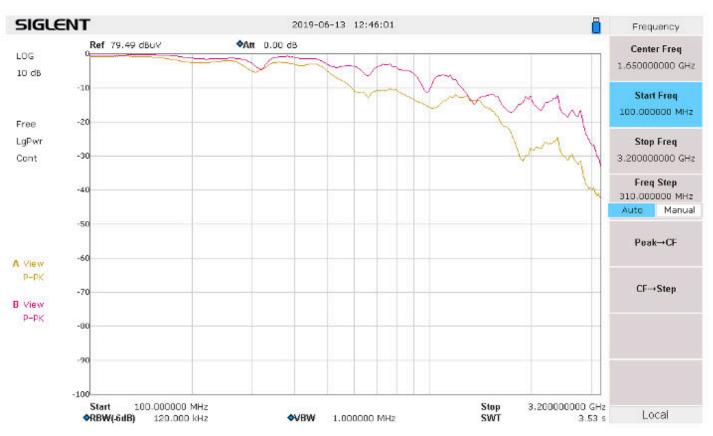



Figure 4: Arc-Tech's WAVE-X P/N WXA10 (yellow) and WXA20 (violet). Sample size: 15 x 15 cm

WIRELESS/5G/IOT

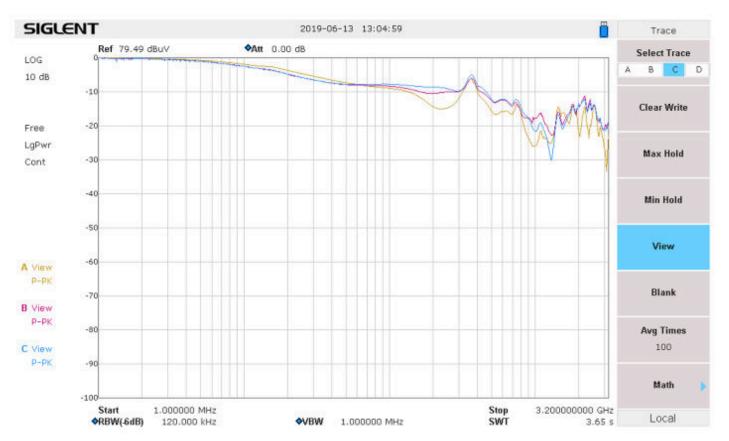



Figure 5: Chomerics P/N SS4850-0100 (yellow), SS4850-0150 (violet), and SS4850-0300 (blue). Sample size: 6.5 x 13, 12 x 13, and 12 x 13 cm, respectively

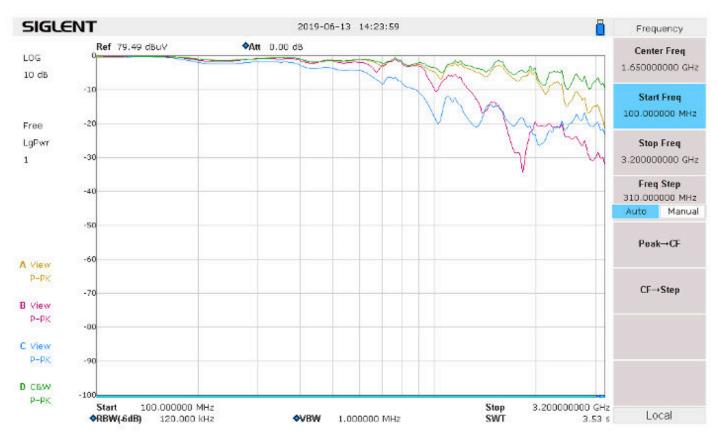



Figure 6: Plot showing the measured ferrite absorbers from NEC. NEC P/N EFR(01) in yellow, FK2(03) in violet, 3TG(04) in green, and R4N(01) in blue. The measured samples were all 8 × 8 cm

ITEM

effective in reducing the self-generated EMI primarily affecting the various cellular receiver (downlink) bands.



Figure 7: A wireless device showing three places where ferrite absorber was placed

In *Figure 8*, I'm measuring the near field emissions with a small antenna at the PC board edge close to where the cellular antenna is located embedded in the case. Examining the LTE Band 5 downlink, we observe several signals that could be the cause of low receive sensitivity, including a large video harmonic (*Figure 9*).

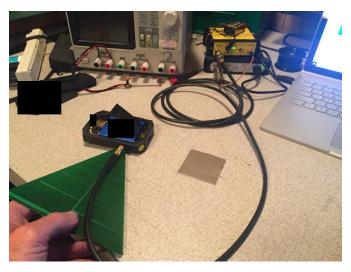



Figure 8: Characterizing the self-generated EMI using a close-spaced antenna

Remeasuring the emissions, we see a 15-dB reduction in the video harmonic and the three narrowband signals have disappeared into the noise floor (*Figure 10*). The result was greatly improved reception on Band 5.

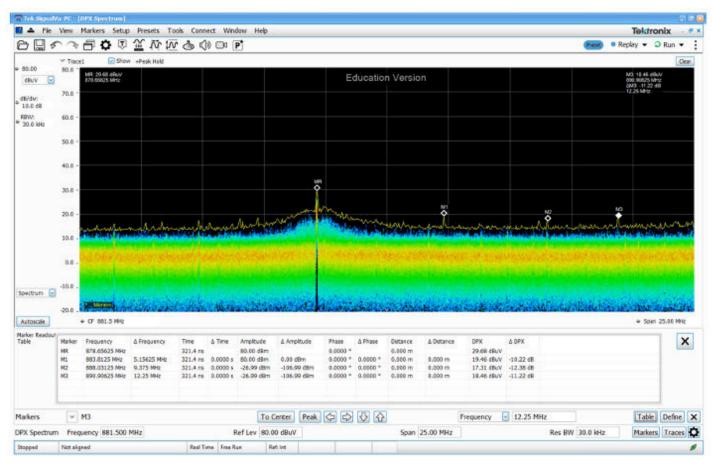



Figure 9: Looking at the LTE Band 5 downlink (869-894 MHz) showing a strong video harmonic with several narrowband harmonics before the ferrite absorber was added

WIRELESS/5G/IOT

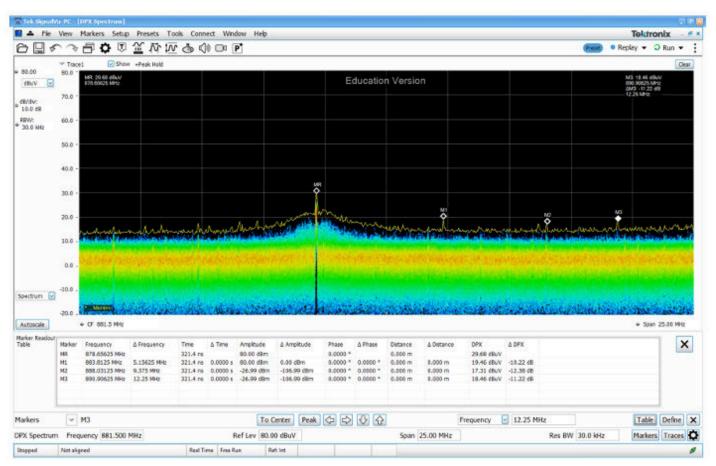



Figure 10: Looking at the LTE Band 5 downlink (869-894 MHz) with ferrite absorbers installed. The video signal was reduced by 15 dB. The narrowband harmonics were gone

#### SUMMARY

I hope this information is useful to you as you're designing smaller wireless products, where every bit of shielding and attenuation of self-generated EMI is important. The use of small bits of ferrite-loaded absorber applied to known EMI sources appears to be a cost-effective solution to reducing self-interference affecting wireless receiver performance. It also did not appear to affect the RF or video performance of the device. While WAVE-X 20 is no longer available in the U.S., there are other manufacturers that make equally good materials. Würth Elektronik described some alternative ways of characterizing ferrite absorber sheets, but the microstrip method was quick and easy.

#### REFERENCES

- 1. Würth Elektronik Applications Note ANP022, Selection and Characteristics of WE-FSFS. https://www.we-online.de/web/en/electronic\_components/produkte\_pb/application\_notes/auswahlundeigenschaftenvonwefsfs.php
- 2. Würth Elektronik, Trilogy of Magnetics (5th Edition). https://www.we-online.de/web/en/electronic\_components/produkte\_pb/fachbuecher/fachbuecher.php
- 3. Kenneth Wyatt, Platform Interference Measurement and Mitigation. https://interferencetechnology.com/platform-interference-measurement-mitigation/





### SI METRICS THAT HAVE TAKEN US TO 224G

#### Zachariah Peterson

Owner, Northwest Engineering Solutions LLC

In the world of signal integrity, we rely on many important metrics to qualify high-speed channel designs, both before prototyping and during prototype testing. There is a common group of signal integrity metrics that appear in high-speed digital interface standards and which need to be implemented in printed circuit boards and packages. These signal integrity metrics have helped guide the way from Gbps interfaces all the way up to the fastest interface implementations we see today, running at 224G PAM-4 per lane.

This article will give readers an overview of these important signal integrity metrics, each of which may be examined at the interconnect level or the system level.

#### LIST OF SIGNAL INTEGRITY METRICS

Although interfaces with faster data rates are clearly more advanced in terms of their function and evaluation, they rely on the same set of signal integrity metrics as used long ago, before Gbps interfaces became common. What has become more advanced is the analysis and interpretation of the results, as well as the resulting changes to PCB or package layouts in order to improve signal integrity.

Whether looking at low speed interfaces at ~1 Gbps NRZ or ultra-fast interfaces at 224G PAM-4, we are often trying to answer the following questions when examining signal integrity:

- Does the channel provide the minimum required quasi-TEM bandwidth?
- Is there excessive loss (absorption or reflection) during propagation?
- Is crosstalk from nearby interconnects within acceptable limits?
- Do losses, crosstalk, and bandwidth limiting create excess bit errors?

#### S-parameters

The workhorse of signal integrity measurements and analysis is S-parameters, which collectively define transmission and loss of signal between the input and output ports of an interconnect. There are multiple ways to use or formulate S-parameters in order to quantify other important signal integrity metrics. Thus, most signal integrity metrics will reference S-parameters when looking in the frequency domain.

Depending on the number of ports in your system and what the S-parameters are meant to represent physically, we can have several different definitions for signal integrity metrics. The table below provides port numbering and some metrics which are qualified with these S-parameter definitions specifically for transmission lines.

Note that *Table 1* addresses transmission lines, but technically the S-parameter definitions for any DUT (either single-ended or differential) would follow the exact same table.

At its root, the S-parameters quantify the input impedance of an interconnect between two terminated ports; this is then related to the characteristic impedance of the DUT or the coupling impedance between two coupled DUTs, e.g., coupling impedance that determines crosstalk. Once an impedance is known, the propagation constant (and thus losses) is known. From there all other signal integrity metrics can be simulated or calculated by hand.

Crosstalk and mode conversion are two sets of signal integrity metrics for differential interconnects; aside from the newest versions of DDR, many high-speed interfaces are differential, including 112G/224G SerDes lanes. Crosstalk has always been a signal integrity metric at lower frequencies and is normally qualified by comparing the relevant S-parameter spectrum against an S-parameter mask.

#### Time Domain Reflectometry

Because impedance is the core signal integrity metric that influences all other metrics, we have a simple method to measure impedance by looking at reflection against a reference value. This is where time-domain reflectometry (TDR) is

EMI, SI & PI

| Interconnect type                              | Number of ports                                        | What is quantified with<br>S-parameters                                                                     |
|------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 1 single-ended<br>transmission line            | 2                                                      | Reflection     Power loss                                                                                   |
| 2 coupled<br>transmission lines                | 4                                                      | <ul><li> Reflection</li><li> Power loss</li><li> Crosstalk</li></ul>                                        |
| Differential transmission line                 | 4 (2 common mode, 2 differential mode)                 | <ul><li> Reflection</li><li> Power loss</li><li> Mode conversion</li></ul>                                  |
| 2 coupled differential transmission lines      | 8 (4 common mode, 4 differential mode)                 | <ul> <li>Reflection</li> <li>Power loss</li> <li>Differential crosstalk</li> <li>Mode conversion</li> </ul> |
| 1 single-ended line and<br>1 differential line | 6 (2 common mode, 2 differential mode, 2 single-ended) | <ul> <li>Reflection</li> <li>Power loss</li> <li>Mixed-mode crosstalk</li> <li>Mode conversion</li> </ul>   |

Table 1

used as it overcomes an important drawback of S-parameter measurements, most notably S11.

In S11 (reflection) measurements, a VNA provides a frequency domain view of reflection due to an impedance mismatch, but it does not say where the major mismatch is which will lead to reflection. This is overcome with a TDR measurement, which will show where the impedance mismatch is located along an interconnect, as well as whether there is excess capacitance or excess inductance.



#### Figure 1

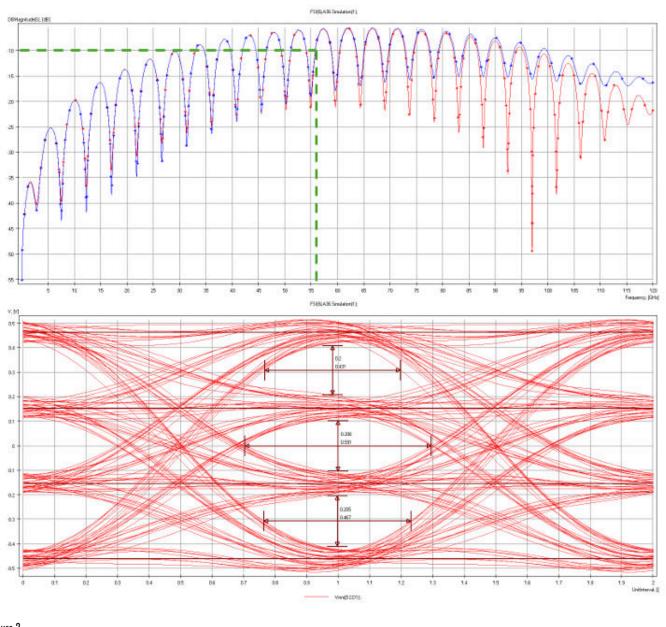
An example from Simbeor is shown in *Figure 1*. Here the peaks in a TDR trace can be used to identify specific points along the length of the interconnect based on the correspond-

ing propagation time; the peaks correspond to impedance discontinuities, which may illustrate excess parasitic capacitance or excess inductance. Here we have a TDR spectrum for a PCIe lane routed as striplines, which shows the effects of the pad and via arrangement right at the input of the interconnect.

Do these peaks really matter? If they are noticed within your required channel bandwidth in the S-parameter spectrum, then the answer is "yes" and these features would need to be redesigned.

Physically smaller discontinuities along interconnects become more noticeable as the required channel bandwidth increases, i.e., as the data rate increases. This occurs because physically smaller deviations create noticeable reflections only at higher frequencies. This means very small PCB or package features like pads/antipads and vias will create reflections that become noticeable in 224G PAM-4 interconnects, which require at least 56 GHz of bandwidth. These very specific features can be identified in a TDR plot and selected for design modification if they create excess reflection.

A related test that is performed in simulation is the impulse response of an interconnect; when the impulse response for an isolated transmission line is simulated, it is equivalent to a TDR simulation. The goal is to qualify a linear network model for your interconnect or DUT in terms of causality, loss, and reflection leading to intersymbol interference.


#### Eye Diagrams

The last mile in qualification of a channel design is to generate an eye diagram. This is the closest representation you will

ITEM

EMI,

SI & P



#### Figure 2

get to real operation before you take measurements of your system. An eye diagram is a simulation where a pseudorandom bitstream is used to examine the bit error rate (BER), a summative metric that allows one to determine whether cumulative signal integrity problems will cause a channel to exhibit unacceptably high data errors.

An example is shown in Simbeor above (*Figure 2*). In this image, any bit errors are determined by comparing with an eye diagram mask, or through automatic calculation. The corresponding S11 spectrum for this differential interconnect illustrates a spot check limit at -10 dB which would be the maximum acceptable return loss. As can be seen, the S11 plot rises above -10 dB before the channel bandwidth requirement of 56 GHz is reached, indicating there is excess impedance mismatch that will impact channel compliance.

In PAM-4 channels, the difficulty increases due to losses extending to higher bandwidths, reduced distance between signal levels, and greatly reduced skew budgets, all of which contribute to eye closure. In these channels where high losses and excess jitter can cause eye closure, equalization or pre-emphasis might be used to bolster signal strength and recover the signal from the noisy bitstream. These measures can be further examined in the eye diagram to ensure the incoming data can be resolved by a receiver.

Although the world is potentially reaching the end of wideband copper interconnects as we near the 56 GHz channel bandwidth requirement, the above metrics will continue to be the yardsticks against which we measure signal integrity. Whatever trick is exploited to get to the next doubling of data rates, these metrics will continue to be used to qualify signal integrity in these more advanced channels.

# WHEN DO YOU NEED LOW-Dk PCB LAMINATES?

#### Zachariah Peterson

Owner, Northwest Engineering Solutions LLC

Designers looking to build more advanced systems operating at higher data rates and bandwidths tend to rely on materials with low dielectric constant values, i.e., low-Dk materials. It has gotten to the point where every high-speed PCB design guide implies that high-speed and RF designs will not function without a low-Dk material like Rogers or Arlon.

The reality is that the use of a low-Dk material in a PCB, or in more advanced substrate and package designs, is an engineering decision just like any other. In PCBs, low-Dk materials provide benefits in terms of manufacturability, particularly in HDI designs, and the material selection is not always related to the electrical functionality of a product. In packaging, the common materials used for substrate buildup tend to have lower Dk than organic PCB materials, but this extends channel bandwidths for certain high-speed interfaces.

Low-Dk materials come in a range of options and commercial products, and this article will outline the main factors driving the usage of a lower Dk laminate. As we will see, you don't always need a high-performance PTFE laminate, but there are times where the additional laminate cost can be a lifesaver for signal integrity and could reduce the overall cost of the product.

### WHY EVERYONE THINKS THEY NEED LOW-DK PCB MATERIALS

There are two very common reasons why basic design guides will recommend low-Dk PCB materials. These two common reasons have to do with signal integrity:

- Justification #1: Lower Dk laminates have faster signal propagation speed, thus it increases the critical length beyond which transmission line impedance calculations are needed.
- Justification #2: Lower Dk laminates create lower losses that are desirable in advanced systems.

The first statement is correct from a physics standpoint: signals traveling in lower Dk materials do have faster propagation speeds, and that would increase the critical length. It is also true that commercially available lower Dk PCB laminates tend to have lower loss tangent, but this only affects dielectric loss, and the reverse of this statement is not universally true. These are not the best justifications for using low Dk materials from a signal integrity perspective.

#### Lower Propagation Speed Does Not Matter

First, let's address point number one. If you are building a system that is deemed "advanced," then you should not look for an excuse not to calculate impedances. It is extremely simple to calculate transmission line characteristic impedance or differential impedance for differential interfaces. This is thanks to a wealth of simulation tools built into CAD programs and online calculators for determining impedance. The difficulty of calculating impedance is, therefore, a non-issue. Furthermore, as I showed in a prior article, the value of a "critical length" is arbitrary and requires calculating the impedance to implement correctly.

#### High-Dk Laminates Can Also Have Low Loss

While it is true that lower Dk PCB materials tend to have low loss tangent, the reverse is not true for higher Dk materials. For example, consider a Rogers 3010 laminate, with Dk = 10.2 and Df = 0.0022 at 10 GHz. Compared to basic FR4 with Dk = 4.4 and Df = 0.02 at 10 GHz, the FR4 laminate has 4x the dielectric loss as the Rogers 3010 laminate despite its lower Dk value. We can see this as follows:

- Rogers 3010 dielectric loss ∝ (10.2)×(0.0022) = 0.02244
- Basic FR4 dielectric loss  $\propto$  (4.4)×(0.02) = 0.088

The factor 4 difference in dielectric loss is very clear. The real difference in total loss when Df values are very low (0.001 or less) comes from differences in conductor size and conductor roughness in a given stackup, it is not just about the laminate's Dk and Df values. This is because, at low Df values, the copper loss becomes dominant starting from 5 GHz and exceeding 50 GHz (depending on material constants). This is especially the case in more advanced designs where layers are thinner, and thus the traces are thinner.

#### REAL REASONS TO USE LOW-DK LAMINATES Manufacturability in Thin Laminates

The first reason to use thin laminates is for manufacturability reasons, particularly when manufacturing designs with impedance controlled buses. The requirement of fixed impedance on certain traces sets the trace width to a specific value, which is also a function of dielectric thickness and substrate Dk value. If the laminate is too thin and the resulting trace width is too thin, the copper etching process will become more expensive. Eventually, at very small linewidths, the processing requirement switches to additive.

*Figure 1* summarizes the trend on thin laminates, and as we can see from the graph, it is possible to maintain fabrication in the subtractive regime, which carries lower costs.

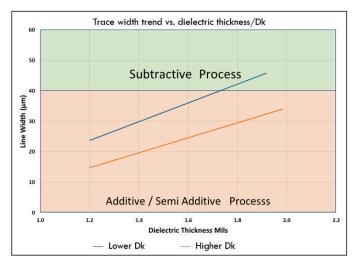



Figure 1

Another reason to stay in the subtractive range is availability of fabrication capacity. Additive copper deposition on PCBs at scale is currently only available in China and Taiwan, which may be a non-starter for some military and aerospace products. Staying in the subtractive range expands the number of available locations where fabrication capacity can be accessed, which will be inclusive of capacity in the US and Europe.

#### **Reducing the Dominant Copper Loss**

As was mentioned above, copper losses become dominant when Df values are sufficiently low. These losses are determined by the skin effect and the roughness of the copper foil used to fabricate the PCB. For microstrips, the plating material used on the surface layers will also impact the copper losses as they can further roughen the copper or create magnetic losses (such as in platings with nickel seed layers).

Using a low-Dk laminate will require a larger conductor cross section in order to hit an impedance target, as shown in the above graph. This then reduces skin effect losses at high frequencies, which is very important in digital signals with bandwidths in the multi-GHz range. Further reductions in conductor losses can be achieved by using alternative surface platings, using smoother copper foils, and preferring microstrip routing where possible.

#### **Reduced Crosstalk and Mode Conversion**

One consequence of the lower dielectric constant and the ability to use thinner dielectrics is more control over crosstalk. When crosstalk occurs, it is mediated by ratio of mutual capacitance (Cm) between two traces to the self capacitance (Cs), and this capacitance ratio is dependent on the Dk value of the dielectric; the same idea applies to mutual and self inductances. Using a lower Dk value provides smaller Cm/ Cs ratio in the following ways:

- Fixed trace width, smaller laminate thickness: this allows Cs to be larger for a given trace width and spacing.
- Larger width → smaller trace spacing: When the width is made larger, a smaller crosstalk penalty would be seen when using a low Dk value compared to a high Dk value.

The first option gives a simple way to keep trace widths constant when swapping a laminate in the PCB stackup. The second option enables HDI design but with smaller crosstalk penalty compared to the case of a higher Dk laminate.

A related signal integrity issue in differential interfaces, which is also mediated by mutual capacitance and mutual inductance, is mode conversion. In some ways, mode conversion in differential channels is a form of loss as it increases differential SNR values by converting some differential signal to common-mode signal, which is then canceled by the differential receiver. For a given trace-to-trace spacing and width in a differential pair, a smaller Dk value will also decrease the mutual capacitance, which decreases mode conversion.

#### THE RESULT: INCREASED CHANNEL BANDWIDTH

In total, these effects surrounding low-Dk values serve to increase the TEM bandwidth of channels for digital signals. Channel bandwidth becomes limited by losses and excitation of non-TEM propagation modes at sufficiently high frequencies. The effects on losses are outlined above and it should be very clear that low Dk manifests its benefits beyond a simple reduction in dielectric loss.

The other mechanism of increasing bandwidth is very important as the fastest digital interfaces start to extend their required channel bandwidths to 56 GHz, corresponding to 224G PAM-4 signaling. This limit was previously reached in 112G NRZ channels, and further bandwidth extensions have only occurred by shifting from NRZ to PAM-4. More advanced components and complex via structures in high density PCBs and packages can extend the bandwidths beyond 56 GHz by using higher density ballouts and low Dk materials in packaging and PCBs.

# MILITARY & AEROSPACE EMC



ITEM

### MILITARY RELATED DOCUMENTS AND STANDARDS

The following references are not intended to be all inclusive, but rather a representation of available sources of additional information and point of contacts.

**MIL-HDBK-235-1C** Military Operational Electromagnetic Environment Profiles Part 1C General Guidance, 1 Oct 2010.

**MIL-HDBK-237D** Electromagnetic Environmental Effects and Spectrum Certification Guidance for the Acquisition Process, 20 May 2005.

**MIL-HDBK-240A** Hazards of Electromagnetic Radiation to Ordnance (HERO) Test Guide, 10 Mar 2011.

**MIL-HDBK-263B** Electrostatic Discharge Control Handbook for Protection of Electrical and Electronic Parts, Assemblies and Equipment (Excluding Electrically Initiated Explosive Devices), 31 Jul 1994.

**MIL-HDBK-274A** Electrical Grounding for Aircraft Safety, 14 Nov 2011.

**MIL-HDBK-335** Management and Design Guidance Electromagnetic Radiation Hardness for Air Launched Ordnance Systems, Notice 4, 08 Jul 2008.

**MIL-HDBK-419A** Grounding, Bonding, and Shielding for Electronic Equipment and Facilities, 29 Dec 1987.

**MIL-HDBK-454B** General Guidelines for Electronic Equipment, 15 Apr 2007.

MIL-HDBK-1004-6 Lightning Protection, 30 May 1988.

**MIL-HDBK-1195**, Radio Frequency Shielded Enclosures, 30 Sep 1988.

**MIL-HDBK-1512** Electroexplosive Subsystems, Electrically Initiated, Design Requirements and Test Methods, 30 Sep 1997.

**MIL-HDBK-1857** Grounding, Bonding and Shielding Design Practices, 27 Mar 1998.

**MIL-STD-188-124B** Grounding, Bonding, and Shielding for Common Long Haul/Tactical Communications-Electronics Facilities and Equipment, 18 Dec 2000.

**MIL-STD-188-125-1** High-Altitude Electromagnetic Pulse (HEMP) Protection for Ground-Based C41 Facilities Performing Critical, Time-Urgent Missions Part 1 Fixed Facilities, 17 Jul 1998.

**MIL-STD-220C** Test Method Standard Method of Insertion Loss Measurement, 14 May 2009.

**MIL-STD-331C** Fuze and Fuze Components, Environmental and Performance Tests for, 22 Jun 2009.

**MIL-STD-449D** Radio Frequency Spectrum Characteristics, Measurement of, 22 Feb 1973.

**MIL-STD-461F** Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment, 10 Dec 2007.

**MIL-STD-461G** Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment, 11 Dec 2015.

**MIL-STD-464D** Electromagnetic Environmental Effects Requirements for Systems, 24 Dec 2020.

**MIL-STD-704F** Aircraft Electric Power Characteristics, 12 Mar 2004.

**MIL-STD-1275E** Characteristics of 28 Volt DC Input Power to Utilization Equipment in Military Vehicles, 22 March 2013 (MIL-STD-1275F expected in 2021)

http://everyspec.com/MIL-STD/MIL-STD-1100-1299/MIL-STD-1275E\_45886/

**MIL-STD-1310H** Standard Practice for Shipboard Bonding, Grounding, and Other Techniques for Electromagnetic Compatibility Electromagnetic Pulse (EMP) Mitigation and Safety, 17 Sep 2009. **MIL-STD-1377** Effectiveness of Cable, Connector, and Weapon Enclosure Shielding and Filters in Precluding Hazards of EM Radiation to Ordnance; Measurement of, 20 Aug 1971.

MIL-STD-1399 Section 300 Part 2 Medium Voltage Electric Power, Alternating Current 25 September 2018 http://everyspec.com/MIL-STD/MIL-STD-1300-1399/

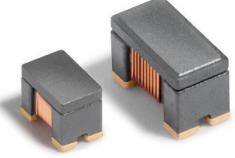
**MIL-STD-1542B** Electromagnetic Compatibility and Grounding Requirements for Space System Facilities, 15 Nov 1991. MIL-STD-1605 Procedures for Conducting a Shipboard Electromagnetic Interference (EMI) Survey (Surface Ships), 08 Oct 2009.

**MIL-STD-1686C** Electrostatic Discharge Control Program for Protection of Electrical and Electronic Parts, Assemblies, and Equipment (Excluding Electrically Initiated Explosive Devices). 25 Oct 1995. **ADS-37A-PRF** Electromagnetic Environmental Effects (E3) Performance and Verification Requirements, 28 May 1996.

**DOD-STD-1399** Section 070 Part 1 D.C. Magnetic Field Environment, Notice 1, 30 Nov 1989.

**DoDI 3222.03** DoD Electromagnetic Environmental Effects (E3) Program, 24 Aug 2014.

**DoDD 4650.01** Policy and Procedures for Management and Use of the Electromagnetic Spectrum, 09 Jan 2009.


**DoDI 6055.11** Protecting Personnel from Electromagnetic Fields, 19 Aug 2009.



### CPxxxFRA Family Common Mode Chokes for Critical Applications

- Eliminate virtually all common mode noise
- Designed for high-speed USB 3.0, HDMI, SATA, IEEE1394 and LVDS applications
- Most values provide >15 dB common mode attenuation and >100 ohms impedance
- Support data rates up to 4.8 Gbit/s
- Standard 0603 and 0805 footprints

Learn more @ cps.coilcraft.com



ITEM

### AEROSPACE STANDARDS

**AIAA Standards** 

http://www.aiaa.org/default.aspx

S-121-2009, Electromagnetic Compatibility Requirements for Space Equipment and Systems

#### **RTCA Standards**

https://www.rtca.org/

**DO-160G**, Environmental Conditions and Test Procedures for Airborne Equipment

**DO-160G Change 1**, Environmental Conditions and Test Procedures for Airborne Equipment

**DO-233**, Portable Electronic Devices Carried on Board Aircraft

**DO-235B**, Assessment of Radio Frequency Interference Relevant to the GNSS L1 Frequency Band

DO-292, Assessment of Radio Frequency Interference Relevant to the GNSS L5/E5A Frequency Band

**DO-294C**, Guidance on Allowing Transmitting Portable Electronic Devices (T-PEDs) on Aircraft

### **DO-307**, Aircraft Design and Certification for Portable Electronic Device (PED) Tolerance

**DO-307A**, Aircraft Design and Certification for Portable Electronic Device (PED) Tolerance

DO-357, User Guide: Supplement to DO-160G

**DO-363**, Guidance for the Development of Portable Electronic Devices (PED) Tolerance for Civil Aircraft

**DO-364**, Minimum Aviation System Performance Standards (MASPS) for Aeronautical Information/Meteorological Data Link Services

**DO-363**, Guidance for the Development of Portable Electronic Devices (PED) Tolerance for Civil Aircraft

**DO-307A**, Aircraft Design and Certification for Portable Electronic Device (PED) Tolerance

#### **SAE Standards**

http://www.sae.org/

**ARP 5583**, Guide to Certification of Aircraft in a High Intensity Radiation (HIRF) Environment http://standards.sae.org/ arp5583/

### REFERENCES

#### **CONFERENCE DIRECTORIES**

AFCEA Events: www.afcea.org/site/

#### ASCE Events:

www.asce.org/communities/institutes-and-technical-groups/ aerospace-engineering/conferences-and-events/

#### **ASD Events:**

https://www.asdevents.com/shopcontent.asp?type=aero-space\_defence

#### Aviation Week Event Calendar:

www.events.aviationweek.com/current/Public/Enter.aspx

#### Defense Conferences:

www.defenseconference.com/

#### Global Edge (MSU):

www.globaledge.msu.edu/industries/aerospace-and-defense/events/

IEEE AESS Events:

www.ieee-aess.org/conferences

#### Jane's Events:

www.janes.com/events

#### LINKEDIN GROUPS

- Aerospace and Defense Subcontractor and Suppliers
- Aerospace and Security and Defence Technology and Business (Defence spelled correctly)
- Defense and Aerospace
- EMP Defense Council
- High Intensity RF (HIRF) Professionals
- Radio, Microwave, Satellite, and Optical Communications
- RF/Microwave Aerospace and Defense Applications
- RF and Microwave Community

# Call for Authors and Contributors!

Want to be a part of the next issue of Interference Technology? Have an article or blog post you'd like to write for InterferenceTechnology.com?

Please Contact Interference Technology's Editor at https://interferencetechnology.com/editorial-contributions/

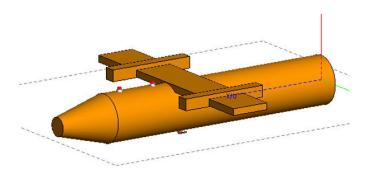
### t INTERFERENCE TECHNOLOGY®

www.InterferenceTechnology.com

### SIMULTANEOUS OPERATIONS (SIMOPS) OF RADIO SYSTEMS DUE TO ANTENNA TO ANTENNA COUPLING ON AN AIRCRAFT

**David A. Weston** EMC Consulting Inc.

Although specifically dealing with aircraft systems, the methods described in this article are applicable for other platforms where a number of antennas are in close proximity. The number of antennas in use and in close proximity on mission specific aircraft are as many as 22 on a small search and rescue aircraft.


#### **ANALYSIS METHODS**

The methods of coupling analysis include electromagnetic analysis programs, measurements on a 1/10th scale aircraft, a full-scale mockup of a part of the aircraft fuselage and wing, as an example, and provisionally mounting antennas on the actual aircraft. All these methods mean that the analysis can be performed before installation of antennas on the aircraft and thus the location of antennas can be modified, or mitigation techniques employed if a coupling problem exists. All of the analysis techniques have advantages and disadvantages. For example, the antennas and antenna drive element would be too small on the 1/10th scale model at 93.75MHz and test equipment for 93.7GHZ would almost certainly not be available. Ideally the electromagnetic analysis programs alone would be good enough. However, in two articles, reference 1 and 2, and in an upcoming paper comparing the accuracy of the four methods, we see that that is not true.

The 1/10th scale model is shown in *Figure 1* and the FEKO program model of the aircraft in *Figure 2*.



Figure 1: 1/10th scale model





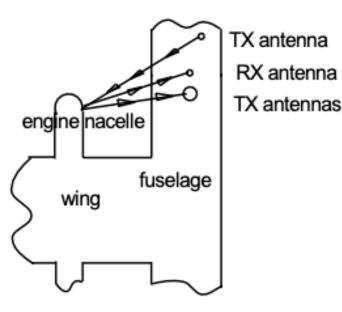
#### **In-Band Coupling**

For transmitter receiver pairs that are in band (i.e., transmitter and receiver frequency the same) a simultaneous operations (SIMOPS) red case (non SIMOPS possibility) is obvious. A possibility for acceptable in-band performance at low frequency may be achieved with an in-band cancellation circuit shown in reference 3.

#### **Out of Band Coupling**

Most antennas do not function as an effective filter and pass "out of band" frequencies with often little attenuation. When a high-level source of electromagnetic radiation is close to an antenna, and the receiver does not contain a band pass filter at the input, then the signal present at the input of the receiver can result in cross modulation (where the interferer modulates the intentional signal). Also, when the transmitter frequency is close to the receiver IF bandwidth or the edges of the receiver bandwidth.

With high input levels desensitization/compression of the receiver can occur, which means the gain of the receiver reduces. Alternatively, the high RF level can be demodulated by a semiconductor in the receiver resulting in a dc level which can effectively saturate the front end. High input levels can result in a spurious response in the receiver which may be in band. If the induced power is too high, a voltage or current can be applied to an input semiconductor, resulting in breakdown


or overheating and stressing. To reduce high levels, a series of band pass, band stop, high pass, and low pass filters have been designed and built from 30MHz to 9.375GHz, described in references 4 and 5.

#### **Passive Intermodulation**

A source of in band interference is Passive intermodulation (PIM). Intermodulation products are generated when two or more signals mix in a structure with nonlinear junctions or ferrous metal. When these intermodulation products fall in band for a co-located receiver, a SIMOPS red case may exist.

Passive Intermodulation may occur in any metal structure in proximity to a receiving antenna, such as the antenna structure, railings, towers, or other metallic surfaces. Reference 4 describes PIM in more detail. One common source of a nonlinear junction is either a loose joint or oxidization of metal. A structure that includes ferrous materials (which has a nonlinear magnetic hysteresis) or carbon fiber (which has a nonlinear resistivity) may also exhibit PIM, and this is, perhaps surprisingly, an order of magnitude higher than the joint generated PIM.

On the aircraft, the ferrous material is typically in the landing gear, flap rods/tracks, and door handles, with the landing gear, flap rods/track the most likely source. *Figure 3* shows an example of the incident and PIM fields.



#### Figure 3

Some of the sources of PIM which have been experienced are:

- Poor alignment of parts
- Moving structures which are not adequately bonded
- Insufficient or incomplete cleaning of parts
- Contaminated plating bath
- Poor plating adhesion

- · Dissimilar metals in direct contact
- Plating non uniformly applied and on insufficient thickness (high resistance)
- Material which has not been in the plating bath long enough (high resistance)
- Oxidization

Luckily the reradiated PIM level is usually at a low level.

Another source of in-band noise may be the broad band noise from a high-power transmitter which is in band.

| Receiver<br>and frequency<br>(MHz)                           | Transmitter<br>and frequency<br>(MHz)             | Frequency<br>over lap | Received<br>level<br>(dBm) |
|--------------------------------------------------------------|---------------------------------------------------|-----------------------|----------------------------|
| #1<br>Cockpit V/UHF<br>30-88<br>18-174<br>225-400<br>400-600 | #2<br>Cockpit HF<br>2-30                          | At 30MHz              | -11                        |
| #1<br>Cockpit V/UHF<br>30-88<br>18-174<br>225-400<br>400-600 | #3<br>Mission HF<br>R&S<br>1.5 - 30               | At 30MHz              | 15.5                       |
| #1<br>Cockpit V/UHF<br>30-88<br>18-174<br>225-400<br>400-600 | #3<br>Mission<br>V/HF<br>R&S V/UHF<br>100-512     | 225-400               | -13                        |
| #1<br>Cockpit V/UHF<br>30-88<br>18-174<br>225-400<br>400-600 | #5<br>Cockpit VHF<br>Comm.<br>VHF#2<br>118- 137   | 118 - 137             | 18                         |
| #6<br>Acoustics VHF<br>Sonobuoy<br>VHF<br>136-173.5          | #3<br>Mission<br>V/HF<br>R&S V/UHF<br>100-512     | 136-173.5             | 1.1                        |
| #6<br>Acoustics VHF<br>Sonobuoy<br>VHF<br>136-173.5          | #5<br>Cockpit VHF<br>Comm.<br>VHF#2<br>136 -173.5 | 136-173.5             | 28                         |

#### Table 1: In-band coupling example

#### In-Band Coupling Analysis Sheet (example)

An example of an in-band coupling sheet is provided in *table 1* with some of these coupled levels being a clear possibility for a red case of SIMOPS.

The effect on the receivers can best be provided by the receiver manufacturer. However, this may not be provided. Another possibility is that the input circuit of the receiver is available, in which case the effect of the level on the circuit can be modelled using a circuit model program. If neither is possible then the assumption can be made that the 15.5dBm and 18dBm levels will cause a problem.

#### An Example of Antenna Coupling

The aircraft has a Side Looking Airborne Radar (SLAR) antenna mounted on the sides operating at 9375MHz. Underneath the fuselage is a Maritime Search Radar also operating at 9375MHz. The antennas transmit and receive a vertically polarized wave.

A creeping wave will be generated from the SLAR antenna to the Maritime Search Radar and vice versa, but due to the high frequency the power will be at a low level. The use of a 1/10th scale model is not practical, nor is the use of one of two analysis computer programs, again because of the high frequency. Neither the SLAR antenna nor the Search Radar Antenna were available. Instead, an E plane sectional horn antenna was built and calibrated.

*Figure 4* shows the gain plot of the SLAR and the sectional horn, and it can be seen that they have a good correlation.

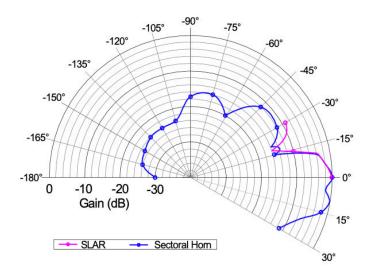



Figure 4: The SLAR antenna plot versus the sectional antenna plot

A parabolic dish antenna was used in place of the maritime search radar. It was angled 5.6 degrees in the H plane and 60 degrees in the E plane to the side of the fuselage. The sidelobe of the radar is minimum 36dB down on the main lobe, and so the sidelobe is 31-36 = -5dB. The parabolic dish gain is 28dB and at 90 degrees it is 27dB. So 27dB-28 = -1dB,

and that is the gain used in the analysis.

Figure 5 shows the coupling path from the SLAR to the radar.



Figure 5: SLAR to radar coupling

The SLAR output power is 25,000W. The power into the sectional horn is 10W and in the analysis the power received by the parabolic dish was corrected accordingly, along with the gain correction.

A full-scale section of the fuselage, wing and nacelle were built with a copper foil covering and the horn and parabolic dish antennas were mounted at the appropriate location. The ground under the mockup was covered in absorber with high absorption at 9375MHz.

The predicted level induced into the Maritime Search Receiver is 42.3dBm.

The SLAR generates a 50nS wide pulse at a repetition rate of 50Hz. This means that the Maritime Search Radar will only see an interfering signal for a short time at a low repletion rate, and may be able to identify it and ignore this level. Because the level is so high (16W) damage to the receiver may be possible. If the SLAR generates a blanking pulse, the Maritime Search Radar may be able to use this to protect the receiver input.

#### CONCLUSIONS

Lack of SIMOPS between transmitters and receivers on a platform can have many causes, including in-band coupling; out of band coupling with high levels at the receiver; and PIM. The mitigation of lack of SIMOPS may be achieved by locating transmitting and receiving antennas on opposite sides of the fuselage (the higher the frequency the more effective this is); moving antennas down the aircraft to minimize reflections from structures such as engines and wings and reduce PIM; signal filters at the antenna end of the receiver cable; in-band cancellation at lower frequencies (See reference 5). Blanking receivers when a transmitter operates may reduce cross modulation, generation of spurious emissions, and receiver damage.

ITEM

#### REFERENCES

- Antenna to Antenna Coupling on an Aircraft Using a 1/10th Scale Model with Results Compared to the FEKO Electromagnetic Analysis Program.
   IEEE EMC Europe 2010.
   D. A. Weston
- 2. Electromagnetic ambient inside an aircraft from transmitting antennas mounted on the outside compared to safety levels and radiated susceptibility test levels.
   D. A. Weston.
   IEEE International Symposium 2013.
- 3. Website: emcconsultinginc.com
- Electromagnetic Compatibility Methods, Analysis, Circuits, and measurement. 1,150 pages. Third Edition. D. A. Weston CRC press 2017.
- 5. Antenna to Antenna coupling on an aircraft: Mitigation techniques. Interference Technology magazine. EMC Directory and Design Guide 2012.

INDEX OF ADVERTISERS

### 2024 INDEX OF ADVERTISERS

**Request Information From Our Advertisers.** When you contact our advertisers, please remember to tell them you saw their ad in *Interference Technology*.



A.H. Systems e: sales@ahsystems.com w: www.AHSystems.com page: 3



Coilcraft Inc. e: sales@coilcraft.com w: www.coilcraft.com pages: 86, 108



**Exodus Advanced Communications** 

e: sales@exoduscomm.com w: www.exoduscomm.com page: 2



#### Fair-Rite Products Corp.

e: ferrites@fair-rite.com w: www.fair-rite.com page: 11



Interference Technology e: info@interferencetechnology.com w: www.interferencetechnology.com page: 110 LECTRIX

e: info@lectrixgroup.com w: www.lectrixgroup.com pages: 116



#### **R&K Company Limited** e: info@rkco.jp w: www.rk-microwave.com/index.php page: 10

#### Spectrum Control

e: leonardo.marsala@spectrumcontrol.com w: www.spectrumcontrol.com page: 6

SPECTRUM

# Break the same old pattern.

### **Problem First. Product Last.**

Strategy | Content | Data | Technology

Digital Marketing for the B2B Electronics Industry

LECTRIX

1.484.688.0300 | info@lectrixgroup.com www.lectrixgroup.com