
AN EXPLANATION OF BROADBAND INTERFERENCE 

The title terminology "broadband interference" will be 
changed to "broadband response", since the word "i'nter- 

ference" denotes something undesirable. In this article the 
broadband response is the central theme, and is consid- 
ered beneficial. 

The best way to discuss broadband response is to reflect 
on the definition of narrowband response. Consider the 
circuit below in Figure 1. f=0 Frequency 
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Figure 3. 

Figure I, 

If Vg is an ideal sine wave generator with a frequency of 
I MHz, the response of a spectrum analyzer or an EMI 
meter connected at R2 would look like that shown in 

Figure 2. 

Math models for a cosine wave and a pulse are pre- 
sented below. A Fourier transform analysis is used 
because it accurately describes the frequency domain 
response of a spectrum analyzer to time domain signals. 

FOURIER ANALYSIS OF A COSINE WAVE AND A 
PULSE 

Equations I, 2, 3 and 4 are crucial for predicting the 
frequency domain response of even so simple a waveform 
as a cosinusoid. 

The Fourier transform F(f), of V(t) is as follows. 
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F(j) = J V(t) e-' " ' 
dt. 

V 

Equation I 

Figure 2. 

However, if Vg is a distorted sine wave, harmonics 
would appear at 2 MHz, 3 MHz, 4 MHz, ad infinitum 
in Figure 2. This phenomenon suggests that if a 
source produ&es all ofits energr at one singlefiequen& v, it 
has a narroivband response. Ifit splitsits energv into two 
or more frequencies, 'tts response is broadband. 

Another source of broadband energy less familiar than 
the distorted sine wave is a repetitive, rectangular pulse. If 
this pulse replaces Vg in Figure I, the spectrum analyzer 
display would appear as shown in Figure 3. Figure 4. 

130 ITEM — 1985 



M = 
e P(f- r)+6(f+ I)] Equation 2 

6(f) is the symbol introduced by Dirac to stand for an 
impulse that is infinitely brief and infinitely strong. 6(f) = 
0 everywhere along the axis except at f = 0, 

and J6 (x) dx = I. 

If V(t) is a perfect cosine, (see Figure 4) in the time 
domain, F(f) in the frequency domain is shown in Equa- 
tion 2. 

Hence, a spectrum analyzer would display 2~$&=A and it 

would paint a line "A" high at a frequency of . r. One 
further point: an EMI meter will always display the rms 
value of the signal(s) present within its bandwidth. There- 
fore, it would indicate . 7071A and not the peak value "A", 
even though it detects the peak of the wave(s) within its 

impulse bandwidth. See Figure 7. 

At f = 0, 6 (f) can be graphed as a spike of unit height as 
shown in Figure 5. a 
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Figure 7. 

Figure 5. 

The solution of a Fourier analysis for a rectangular 
pulse train follows. Figure 8 shows this pulse train as it 

appears in the time domain. 

With the above understanding of 6(f), Equation 2 can 
be graphed as shown in Figure 6. 
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Figure S. 

Frequency 

Figure 6. 

At (f — w) = 0, f =T, and at (f+w) = 0, f = T. An 
analyzer does not display the negative frequency part of 
the Fourier spectrum; what it does display is twice the 
absolute value of the Fourier transform's positive 
spectrum: 

Its Fourier transform is as shown in Equation 3. 
OO n 

l'm 
y p (f n)]sill 77 r 

nf oo 
Equation 3 

I 6(f — — ", ) df — = I for all f =~ 

Again, the term in brackets [6(f- — „". )] must be inter- 
preted [because it contains 6(f)] to make sense out of 
Equation 3. It serves only to reduce to zero all responses in 

{f) except those at n= + I, k2, +3, . . . . . . k~. For numer- 
ical evaluation purposes it can be set equal to unity. 

viz: 2/ F(f)/. where n=0, kl, k2, +3, +4, . . . k~ 
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A graph of Equation 3 is shown below in Figure 9. If the 
pulse train's period (T) is short enough, an analyzer can 
resolve the individual frequency components. It would 
display only the right-hand half of Figure 9 — it would 
also show each spectral line as being twice the amplitude 
in Figure 8 and invert all negative lobes. (See Figure 3. ) 

This bandpass filter acts to allow only those frequencies 
present within its bandpass to get through to the peak 
detector and rejects all frequencies both below and above 
its bandpass. Its center frequency is also variable, thus the 
filter can be pictured as sweeping back and forth along the 
frequency axis. See Figure 11. 
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RESPONSE OF AN EMI METER TO AN UNRE- 
SOLVABLE SIGNAL 

When an analyzer cannot resolve the individual fre- 
quency components, a different type of measurement 
must be made; within the EM I discipline this measure- 
ment is called "broadband. " 

The broadband response of an EM I meter to the pulse 
train of Figure 8 is explained as follows. All EMI meters 
are essentially superheterodyne receivers with a peak 
detector connected to the output of their I. F. strip. Even 
though frequency translations occur within them, their 
broadband response can be easily understood if they are 
pictured as simply an ideal bandpass filter with its input 
connected to the pulse signal and its output connected to a 
peak detector. See Figure 10. 

Here, to get the response in the time domain at the peak 
detector, the inverse Fourier transform is used. It must be 
remembered that Equation 3 is the frequent i& domain 
solution to the rectangular pulse. Equation 4, given below, 
is the time domain solution to the same pulse. 

~ sin v 7 (i. ) 
V(t) = v" X n Cos [2v( — ", ) t] Equation 4 

Equation 4 states that the mathematically awkward 
pulse train of Figure 8 is identically equal to the sum of a 
series of harmonically related cosine waves. The bandpass 
filter in Figures 10 and 11 sees the infinite series of cosine 
waves at its input and outputs only in those frequencies 
lying within its bandpass; i. e. , it restricts the limits on X in 

Equation 4 to the upper and lower cutoff frequencies of 
the filter. The peak detector, in turn, detects the maximum 
value of the sum of the cosine waves in the bandpass and 
the analyzer displays this peak value at the center fre- 
quency of the bandpass filter. A/I EM/ meters that are 
used to make MIL-STD-46/ measurements do this. 

Restricting Equation 4 to the positive frequency 
domain, as was done for Equation 3, results in the band- 
pass response as being equal to twice the absolute value of 
the inverse Fourier transform; 2/V(t)/. The maximum 
value of Equation 4 occurs at t = 0, and Equation 4 
reduces to evaluating the terms of the summation. 

Upper cut-off frequency 

2Vm, sinv r(-", ) 
v ~ n 

Figure 10. Lower cut-off frequency 

134 ITEM — 1985 



That expression, of course, would normally entail the use 

of a computer since it's fair to say that no one would want 

to spend his weekends evaluating it with his hand-held 

calculator. Fortunately, Equation 4 can be approximated 
very closely by taking the average of the values at the 
filter's upper and lower cut-off frequencies and multi- 

plying the number of cosine waves simultaneously present 

within the bandpass. For example, 

190) i, J 
= 1. 2667 V/MHz. 

I X 106Hz 

150 X 10-'Hz 

Converting to dBpV/MHz; 

1. 2667V 
dBpv/MHz = 20 Log „= 122. 05 

10 V 

Upper cut-off frequency = 575, 000 Hz 

n = (575, 000) (10--') = 575 
n =ff 

Lower Cut-off Frequency = 425, 000 Hz 
n = (425, 000) (10-') = 425 

V 

E 
CI5 

lZ 0. 

Filter Bandwidth = 150, 000 Hz 

T= 10 — 's; r=10 — 6s; Vm= I volt 
Pulse 
Parameters 

Subtracting 3 dB to account for RMS values yields 

119. 05dBpV/MHz. A Iaboratorv measurement with an 
EMI mete'r w'tll verifi this. This measurement can be 

performed by using Figure 1. Vg and Rl should be 

replaced in that Figure with a 50 ohm pulse generator. R2 
should be the 50 ohm input impedance of the EM I meter. 
T' he pulse amplitude, width, rise/fall times and PRF 
should be set with an oscilloscope. The meter input should 

be padded with about 40dB or the I volt pulse may 
overload it. 

2Vm sin w r (r) 2ii! sin w(IO )(ic!"i) 
2/ Vt/ i c. v- 

Tr n tr 

Notes: 1 he author wishes to express his gratitude to 
his collegue Alee Bargman, without whose help 
this paper could not have been written. Deriva- 

tions for Equation 2, Equation 3 and Equation 
4 are available from the author. 

=1, 456x 10 V 

5 5'!5 — l 
sin tr (10 ")( 0-i) = 1. 077 x 10 V 

2/ Vt/ c!c, v = ~ 

Avg = 1. 2665 X 10 — 'V. The number of spectral lines in 

the filter bandwidth is equal to n = IT=(150 X 103) (10 — -') 

= 150. Therefore, (1. 2665 X 10 — -') X 150 = . 190 V/150 
KHz. 

Equation 5 

Considering that Equation 5 was computed over an 

Equation 5 filter bandwidth of 150 KHz it is customary to 
assign units of V/ Hz to it. 

Normalizing to I MHz (MIL-STD-461, for example, 
uses I MHz as a baseline): 
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APPENDIX I 
The derivations for Equation 2, Equation 3 and Equation 
4. 

Derivation for the Frequency Domain response of a 
Cosine wave — Equation 2. 

1. V(t) = A Cos 2tr (grt = A Cos 2tr — 
„ 

t = A Cos wt 

I 

where: w = 2n ( r) 

2. FP) = J V(t) e-' " 'dt 

= AJ Cos wt e — ' dt 
QO 

+ e !e't 
since Cos wt— 
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/Af P't J2rrftdt + Ag f Jwt J2&tdt 

= gf I  — ' " v-'. J dt + 82f I w — ' " 
tJ ~ . '-. J' dt 

Since The Fourier transform of 1 = 6(x), 

M=8[6(f- / )+6(f+ /")] 

/2 [6 (f-~) +6 (f+ T )] Equation 2 

Derivation for the Frequency Domain response of a posi- 

tive, repetitive, rectangular pulse - Equation 3. 

l. II (t) = 

0 / t/)'/2 
('/2 /t/ = '/2) 

I /t/ (y2 

AND, III (t) =X 6(t-n) 
I/2 '/2 

2. When III(t) enters into convolution with a time func- 

tion, it replicates it. Therefore, the positive repetitive 
rectangular pulse can be expressed as: 

3. Since convolution of two functions means multipli- 
cation of their transforms, the Fourier transform of 
V(t) above becomes: 

V(t) = ~ III (T) * V II (7) F(f) = z [T III (Tf)] ~ V 

Please see figure 7 for the definitions of V, T and r, 

sin rr r (0) =w 6 (f-2) Equation 3. n=-~ n 

Derivation of the Time Domain response for the positive, 
repetitive, rectangular pulse — Equation 4 

1. F(f), for the pulse train, is an even function. There- 
fore, the inverse Fourier transform for it can be 
expressed as: 

V(t) = f 2r X n Cos 22r(T)t 6(f-T) df 
v Sin 2r r(g 

oo n 00 

= 2r X Cos 22r()t f 6(f-v) df 
n-DtJ n OO 

Since d(f-T) = df, and f 6(/) df — = 1, 

Then; 
OO R 

V(t) = Jr ~ n Cos 22r (q)t Equation 4. vm sin 7T T 'r 
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