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THE CONCEPT OF 
EQUIVALENT TIME 
In many circumstances, the dura- 
tion of a pulse is sufficiently short 
that essentially all of its energy is 
converted to internal energy with a 
rise in temperature proportional to 
the specific heat of the materials 
carrying the pulse currents. This is 
valid whenever the pulse duration is 

Thus the equivalent time is the time 
duration of a constant pulse at cur- 
rent I that delivers the same energy 
as the pulse of arbitrary shape. Fre- 
quently a peak power is specified ' 
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rather than a peak current. In that 
case the peak current is adequately 
given by 
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Since the waveforms are substantially standard- 
ized, for any one of them the equivalent time may be 
calculated once and for all, and energies delivered to 
devices are then calculated simply from the last 
three equations. 

short in comparison to the thermal diffusion times. 
It is then convenient to define a pulse equivalent 
time which is reached according to the following 
considerations. 

For a pulse initiated at t = 0, the total energy 
delivered to a component is given by 

E = I i(t) V(t) dt 
Jo 

If the component under consideration is a surge 
arresting device, for pulses of large amplitude the 
one of interest, the voltage across the device, will be 
substantially constant during the most significant 
portion of the pulse event. In that case, the integral 
above becomes 

E=V, i(t) dt 
0 

where V is the clamp voltage of the arresting device. 
Further, if the pulse were rectangular, the result 
would be 

f i(t) dt= i T 
0 

where I is the peak current and T is the pulse 
duration. An equivalent time for a pulse of arbitrary 
shape is then defined by 
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THE EXPONENTIAL PULSE 
To illustrate the principles as simply as possible, 
consider a single exponential pulse that is zero for 
negative times and for positive times is given by 

t 
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In this case, the peak current is i and the equiv- 
alent time is given by 

oa ~ t t 

Teq= ' J oe dt = e dt= — ~e" 
ip 0 0 0 

For the single exponential, the equivalent time is 
the exponential time constant. In one sense, that is 
a rather remarkable result, and is a special property 
of the exponential function. Why it is remarkable is 
illustrated by Figure l. 

Our result says that the area under the infinitely 
long tail of the exponential is exactly equal to the 
area above the curve and contained in the unit 
rectangle. 

Note that from the last equation, the equivalent time 
is independent of the pulse amplitude. It depends 
only on the pulse shape. 

For a pulse of arbitrary shape the result is 

E IpVQT+q 

THE DOU6LE EXPONENTIAL 
A type of pulse frequently of interest is shown in 
Figure 2. 

It is characterized by the time it takes to reach the 
peak and the time it takes to reach half amplitude 
beyond the peak. The specification is generally 
written as t, x t, where both times are measured 
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Figure 1. Single Exponential Pulse. Figure 2. 5 x 20 ps Pulse. 

from the time origin. The pulse displayed is a unity 
amplitude 5 x 20 Its pulse. These times were chosen 
to clearly exhibit the general pulse characteristics. 
The specific example is a double exponential whose 
analytic representation is 

i(t) = ip exp - — - exp 

where z& is the exponential decay time constant and 
x, is the exponential rise time constant. 

Integrations similar to the one performed for the 
single exponential give the equivalent time as 
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That's the easy part. However, in this case i and 
i are not equal. Even worse, the specification is 
given in terms of ti x t, not the exponential time 
constants. A t, x t specification means that the 
exponential time constants must be determined to 
arrive at the equivalent time. 

The time constants are found by simultaneously 
solving the derivative equation that locates the peak 
and the equation that locates the half amplitude 
point. These equations will be referred to as the 
constraint equations. The constraint equations can 
be respectively put in the form 

the validity of the computer programs being used 
was demonstrated. 

Not every ti x t specification can be met by a 
double exponential function. A good example is the 
frequently occurring 8 x 20 p. s. To see what is 
occurring, the constraint equations can be plotted. 
This is a non-trivial task, since for each point of each 
plot one of the transcendental constraint equations 
must be solved. The plot for 5 x 20 Iis is shown in 
Figure 3. 

To get a useable double exponential pulse, the two 
curves must cross in the region where x, and zd are 
not equal. Since both constraints possess the trivial 
solution, they are seen merging into those solutions 
in the region to the right of the plot. For those 
solutions, the double exponential is the constant 
zero function, so itis of no use. For the Bx20 Its there 
is no intersection in the region for nonequal x, and 
z&. There is no 8 x 20 Iis double exponential (Figure 4). 

Fortunately, an approximate equivalent time is 
valid for practical purposes. Such a pulse is shown 
in Figure 5. 

What one finds here is that the exponential time 
constants are equal, to about three significant fig- 
ures, and thevalueofi isontheorderof 10 . Thus, 
the computations must be done correspondingly 
accurately to obtain a valid result for equivalent 
time. The result is 
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and here include two simultaneous transcendental 
equations. Except for the trivial solution, w, = z&, 
there is no analytical solution; numeric computa- 
tion is necessary. That is how the 5 x 20 Its waveform 
shown above is reached. For that case 

wd 
— 18. 6 ps sr =2. Ops ip 1 5A Teq 243 Its 

All specification requirements were exactly met and 

The approximating waveform is actually a 7. 5 x 20 
p, s. Plots of the constraint equations are shown in 
Figure 6. 

It is not entirely clear from the plot, but the two 
curves just barely cross in the region for nonequal z, 
and z& where the two are nearly equal, as computed 
above. Estimates made with the corresponding 
equivalent time will be conservative because a 7. 5 x 
20 Iis will contain slightly more energy than an 8 x 
20 ps. 

Given the 20 ps, one can not help but wonder if 
Continued on page 268 
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