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THE CONCEPT OF
EQUIVALENT TIME
In many circumstances, the dura-
tion of a pulse is sufficiently short
that essentially all of its energy is
converted to internal energy with a
rise in temperature proportional to
the specific heat of the materials
carrying the pulse currents. This is
valid whenever the pulse duration is
short in comparison to the thermal diffusion times.
It is then convenient to define a pulse equivalent
time which is reached according to the following
considerations.

For a pulse initiated at t = O, the total energy
delivered to a component is given by

E =j; it) v(t) dt

If the component under consideration is a surge
arresting device, for pulses of large amplitude the
one of interest, the voltage across the device, will be
substantially constant during the most significant
portion of the pulse event. In that case, the integral
above becomes

E=vcﬁt) dt

where V_is the clamp voltage of the arresting device.
Further, if the pulse were rectangular, the result
would be

f Ti dt=i,T
o]

where i is the peak current and T is the pulse
duration. An equivalent time for a pulse of arbitrary
shape is then defined by

e 1
Teq“ ip./(; i(t)dt —i(tp)j(; i(t)dt

Note that from the last equation, the equivalent time
is independent of the pulse amplitude. It depends
only on the pulse shape.

For a pulse of arbitrary shape the result is
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_ Thus the equivalent time is the time
duration of a constant pulse at cur-
renti that delivers the same energy
as the pulse of arbitrary shape. Fre-
quently a peak power is specified
rather than a peak current. In that
case the peak current is adequately

iy = E and E=P,T
A P eq
Since the waveforms are substantially standard-
ized, for any one of them the equivalent time may be
calculated once and for all, and energies delivered to
devices are then calculated simply from the last
three equations.

THE EXPONENTIAL PULSE .
To illustrate the principles as simply as possible,
consider a single exponential pulse that is zero for
negative times and for positive times is given by
A
it) =iye T

In this case, the peak current is ij and the equiv-
alent time is given by

I R o
Teqzi“p‘j(; i,e  dt =f0e dt=-1e 0 =7

For the single exponential, the equivalent time is
the exponential time constant. In one sense, that is
arather remarkable result, and is a special property
of the exponential function. Why it is remarkable is
illustrated by Figure 1.

Our result says that the area under the infinitely
long tail of the exponential is exactly equal to the
area above the curve and contained in the unit
rectangle.

THE DOUBLE EXPONENTIAL
A type of pulse frequently of interest is shown in
Figure 2.

It is characterized by the time it takes to reach the
peak and the time it takes to reach half amplitude
beyond the peak. The specification is generally
written as t, x t,, where both times are measured
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Figure 1. Single Exponential Pulse.

from the time origin. The pulse displayed is a unity
amplitude 5 x 20 us pulse. These times were chosen
to clearly exhibit the general pulse characteristics.
The specific example is a double exponential whose
analytic representation is

it) = iy [exp ( %d) exp (%)]

where 1, is the exponential decay time constant and

1, is the exponential rise time constant.
Integrations similar to the one performed for the

single exponential give the equivalent time as

Teq = # (Td'rr)
p

That's the easy part. However, in this case i, and
i, are not equal. Even worse, the specification is
given in terms of t; x t,, not the exponential time
constants. A t; x t, specification means that the
exponential time constants must be determined to
arrive at the equivalent time.

The time constants are found by simultaneously
solving the derivative equation that locates the peak
and the equation that locates the half amplitude
point. These equations will be referred to as the
constraint equations. The constraint equations can
be respectively put in the form

Low(i)-1 e () -
?dexp-Td ?rexp T, =0

[exp('%) % exp ( t?;)] [exp (%) % exp (%)] =0

and here include two simultaneous transcendental
equations. Except for the trivial solution, 7, = 1,
there is no analytical solution; numeric computa-
tionis necessary. That is how the 5x 20 us waveform
shown above is reached. For that case

Ty=186us 1,=2.0us

ib=15A T,=243us

All specification requirements were exactly met and
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Figure 2. 5 x 20 us Pulse.

the validity of the computer programs being used
was demonstrated.

Not every t; x t, specification can be met by a
double exponential function. A good example is the
frequently occurring 8 x 20 us. To see what is
occurring, the constraint equations can be plotted.
Thisis anon-trivial task, since for each pointofeach
plot one of the transcendental constraint equations
must be solved. The plot for 5 x 20 pus is shown in
Figure 3.

To get a useable double exponential pulse, the two
curves must cross in the region where t_and 1, are
not equal. Since both constraints possess the trivial
solution, they are seen merging into those solutions
in the region to the right of the plot. For those
solutions, the double exponential is the constant
zero function, soitis of nouse. For the 8 x 20 us there
is no intersection in the region for nonequal 7, and
T4- There is no 8 x 20 us double exponential (Figure 4).

Fortunately, an approximate equivalent time is
valid for practical purposes. Such a pulse is shown
in Figure 5.

What one finds here is that the exponential time
constants are equal, to about three significant fig-
ures, and the value of i is on the order of 108. Thus,
the computations must be done correspondingly
accurately to obtain a valid result for equivalent
time. The result is
i, =6.1 kA T,=74us 13=7.4us Teq =202 us

The approximating waveform is actuallya 7.5 x 20
ps. Plots of the constraint equations are shown in
Figure 6.

It is not entirely clear from the plot, but the two
curves just barely cross in the region for nonequal t,
and 14 where the two are nearly equal, as computed
above. Estimates made with the corresponding
equivalent time will be conservative because a 7.5 x
20 ps will contain slightly more energy than an 8 x
20 us.

Given the 20 us, one can not help but wonder if

Continued on page 268
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Figure 3. 5 x 20 ps Pulse. Solid line is peak con-
straint; dashed line is half-value constraint.

Figure 4. 8 x 20 us Pulse. Solid line is peak
constraint; dashed line is half-value constraint.
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Figure 5. Approximate 8 x 20 us Pulse.

someone chose the 8 us to make this result come out
the way it does. The answer is unclear. The remark-
able factors are the closeness of T, to 20 us and the
fact that the resultant location is the borderline of
where a double exponential can be used at all. We
also note that an 8 x 20 us waveform contains nearly
the same energy as a single exponential with the
same peak amplitude and a 20 us decay time. The
single exponential has an infinitely fast rise time, so
can not be practically generated. The double expo-
nential can be approximated in practice. Are these
curious coincidences?

The exponentials are chosen to illustrate the con-
ceptofequivalent time because they are the simplest
functions with which to deal. The difficulties alluded
to in the last paragraphs were not anticipated.

THE IEC ESD PULSE
The [EC Standard 801-2, “Electromagnetic Compat-
ibility for Industrial-Process Measurement and Con-
trol Equipment,” proposes a waveform to be used for
ESD testing. The waveform is given in graphical form
only. Fifty-one values were read from the graph and
entered into a simple computer system. A plot of the
entered data is given in Figure 7.

Numerical integration was used to find the equiv-
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Figure 6. 7.5 x 20 us Pulse. Solid line is peak
constraint; dashed line is half-value constraint.

alent time. A number valid for practical purposes is
Teq =34ns

In vendor literature, test source voltages are fre-
quently cited. To use the concept of equivalent time
the peak current is needed. The IEC document
specifies the conductance at peak current as 3.75
kmhos. Thus the peak current may be found by
multiplying the source voltage in kV by 3.75.

LINEAR RISE WITH EXPONENTIAL DECAY
Figure 8 shows a waveform that sometimes appears
in vendor literature. It has the advantage that it is
analytically simple and the disadvantage that it can
not be easily generated in a test system.

The double exponential waveforms are character-
ized by a t| and t, specification. This example is 8 x
20 us.

Using the general methods of the first two sec-
tions, the decay exponential time constant and
equivalent time are found to be
oLty

=+ =+
2 2 T2 T

ety

d—la and Teq=

For the 8 x 20 us example, the equivalent time is 21.3 us.
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Figure 7. Waveform Proposed in IEC Standard 801-2.

THE GAUSSIAN PULSE

In some communications receiver front-end appli-
cations, the specified pulse shape is Gaussian. The
specification is given in terms of peak amplitude and
10-90% rise time, t.. To determine the equivalent
time, the peak amplitude unity normalized function
will be used.

-(+)°

1
i=e'"

Since the pulse is an even function, the rise and fall
times are equal, and since negative times should not
be a concern, the visualization of the calculations
will be made on the pulse trailing edge. t; will be
used as the time at which the pulse has fallen to 90%
of peak and t, as the time at which the pulse has
fallen to 10% of peak. To find the equivalent time, t
must be known and to find 1, t; or t, must be known.
Manipulation of the above equation gives

t
=ttt T=t,

1=VIni(t,)/Ini(ty) V=In(i(t,))

Substituting numerical values for a 10-90% rise
time gives
t,=1.2721,

ti=t,t, T=06591,

The standard normalization for a Gaussian func-

tion can be expressed as
2

- 1y
f e 2" du=+2x

—oc0

With the appropriate change of variables,

j_‘we_(%)zdt =t\n

00

which gives an equivalent time of
Teq=7'n

In some instances, the test methodology is in
terms of a free space excitation of an antenna with
the pulse amplitude specified by the open circuit
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Figure 8. Common Waveform.

peak voltage at the antenna output port. In that
case, the peak current is given by

~ VoV

iy >

(¢}

where V is the peak voltage, V. is the varistor clamp
voltage, and Z  is the characteristicimpedance of the
associated transmission line. For example, for

V,=1500V V=30V Z,=50Q  t,=3ns

we would have

t,=38ns t,=0.8ns 1=2.5ns Teq =45ns
ip =294A E=39uJ
CONCLUSION

Frequently the total energy delivered to a varistor
device is a significant factor in determining device
survival. For pulses of duration short in comparison
to thermal diffusion times, it is a major factor. Thus,
being able torelate the total energy to other standard
device specification parameters is essential. Once
the equivalent time for a given pulse shape is
determined, calculation of total energy in terms of
those parameters, not involving the pulse shape,
becomes a simple matter. The equivalent time for a
number of frequently encountered waveforms is
presented herein and some rather curious charac-
teristics of the double exponential are revealed.
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