
SMALL ANTENNAS — AN OVERVIEW 

This article discusses state-of-the art technology and 
ongoing research and new developments in srrtall anten- 
nas and data transmission links which have been 
designed to provide EMI measurements that would not 
be possible, or would be severely restricted with the use of 
standard antennas. It is intended that the treatment pro- 
vided herein be somewhat superficial, so that an in-depth 
knowledge of antenna theory is not necessary to digest its 
content. Accordingly, the article is addressed to the pro- 
fessional who must deal with all engineering phases of a 
product, and must make sound engineering judgments 
based on enough information to be cognizant of the engi- 
neering problems associated with these phases. 

Electromagnetic field measurements have tradt- 
tionally been made with standard relatively large anten- 
nas that have been fabricated without critical attention 
to minimization of the sensing element or means of trans- 
mitting the received data so as not to perturb the mea- 
sured field. This is not to imply that these factors were 
considered trivial in designing antennas. Rather, the 
intended use of the antennas did not justify the expense of 
attempting to miniaturize and provide non-perturbing 
data links, and in any case, the technology did not exist 
which could provide the means to accomplish these desir- 
able designs. 

In recent years, new technology has emerged which 
has placed a higher demand on the antenna design engi- 
neer to miniaturize. The factors causing this have been 
higher frequencies to be measured, smaller electronic 
units with smaller voltages and currents, and recent 
trends by federal agencies to consider susceptibility of 
individual equipment, rather than only addressing EMI 
emissions from intentional or inadvertent transmitting 
units (74). 

The higher frequencies require smaller antennas 
due to their shorter wavelengths, the smaller electronic 
units require accesibility of antennas, smaller voltages 
and currents require close-in measurements near critical 
components, and the susceptibility trend will require 
that hardening techniques be designed into equipment 
that may receive undesired signals. These hardening 
techniques require that the electromagnetic fields be 
known within the equipment, whether these fields are 
internally or externally generated. 

The types of equipment that are in need of design 
engineering that incorporate EMI analysis and prototype 
measurements are innumerable. They can range from the 
automobile electronic ignition and radar braking sys- 
tems, to home computer games and television sets, to 
elaborate industrial computers and medical diagnostic 
equipment. All share the common potential of susceptibil- 
ity to EMI, which if not thoroughly considered, can result 
in significant changes to production equipment. These 
changes may only become evident after the equipment is 
placed into use by the customer, and does not perform as 
expected due to EMI problems. 

zone conditions and relative sizes of transmitting and 
receiving antennas, ground planes, and reflecting or 
absorbing materials. Even an elementary treatment of 
the various complications in antenna parameters is far 
beyond the scope of this article, and is deferred to the 
numerous published references on antenna theory. This 
overview therefore consists of a cursory examination of 
"small" antennas that have been proven in tests, and are 
much less than a wavelength in their largest dimension 
measured from the input terminals. It will also consist of 
a look at ongoing and future research into antennas that 
provide a reasonable degree of confidence in providing 
accurate field measurements. Another antenna, the 
CAVITENNA, is discussed in the Susceptibility Sources 
section of this issue of ITEM. 

Electromagnetic Fields of Interest 
There are many different types of electromagnetic 

field measurements, depending on the type of sensor 
used. These include E-Field, H-Field, power density, 
current density, energy, potential, flux density, time 
derivative functions of these units, etc. For most EMC 
applications, the field parameters of interest are the E- 
Field (V/m) and the H-Field (A/m). Both must be mea- 
sured to define the electromagnetic field in near field 
conditions. When far-zone conditions apply, either can be 
calculated from measuring the other Py using the free 
space intrinsic impedance relationship E = ZH. The near 
zone presents complex conditions and both the E-Field 
and H-field must be measured to quantify the electro- 
magnetic field. Knowledge of the E-Field and H-Field 
will allow the conversion into other units if the permitiv- 
ity, conductivity, and permeability of the medium are 
known, and are. uniform. Sensors have been fabricated to 
display these units and others directly; however, most are 
used in special applications, such as nuclear Electromag- 
netic Pulse (EMP), and geophysical measurements. For 
these reasons, the antennas considered in this paper will 
be restricted to E-Field and H-Field antennas, or sen- 
sors, which can be considered special forms of antennas. 

Basic Theory of Small Sensors 
The basic geometry of the passive E-Field sensor is 

that of a capacitive dipole as shown in Figure 1. 

Antennas to be Considered 

There are many definitions of antennas in terms of 
"long, " "short, " "small, " "fat, " "thin, " "linear, " ad infini- 
tum, with mathematical expressions for determining the 
fields of these antennas which mayor may not be calcula- 
ble. The fields are also dependent on near zone and far Figure 1. Basic Geometry of' Passive E-Fiefd Sensor 
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The Norton and Thevenin equivalent circuits are 
illustrated in Figure 2. 

Equation (2) is the desired output, and is satisfied by 
the appropriate choice of RL at the frequency of interest. 
A shunt capacitance may be needed to "swamp" the 
actual probe capacitance and offset stray capacitive 
effects. In this case, Ca. in Equation (2) is replaced by the 
value of the shunt capacitance, provided it is much larger 
than Cp. 
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The basic geometry of the passive H-Field sensor is 
that of an inductive loop shown in Figure 3. 

Figure 2. Norton and Thevenin Equivalent Circuits for 
Passive E-Field Sensors 

The parameters of the passive electric field sensor are: 

A, = effective area 
I, = effective length 

L = sensor inductance 
P 

permeability of free space 

Figure 3. Basic Geometry of Passive H-Field 
Sensor 

The Norton and Thevenin equivalent circuits are illus- 
trated in Figure 4. 
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and the sensor output voltage is 

Figure 4. Norton and Thevenin Equivalent Circiuts 
for Passive H-Field Sensors 

The parameters of the passive magnetic field sensor are: 
s EARL 

Vout = 

C RL+ 

1 
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Equation 2 
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1, 
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sQ 
= 

effective area 
effective length 
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From the equivalent circuits: 

s, A, E 
then Vout = 

tT 

(2) Equation 3 
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and the sensor output voltage is 

jcup A HR 
Vout = ~ 

jcuL + Rq 

if R& « cuL 

Equation 4 

Equation 5 

Sensors 1 through 5 of Figure 5 are E-Field "sur- 
face"sensors. These measure the component of the E- 
Field 'normal to the surface over which the sensor is 
placed. Sensor 6 is an H-Field "surface" sensor. It mea- 
sures the tangential magnetic field at the surface over 
which the sensor is placed. Sensors 7 through 11 are 
E-Field "free field" sensors, and sensor 12 is an H-Field 
"free field" sensor. A brief explanation of each sensor is 
provided, with the numbers corresponding to those in 
Figure 5. 

P A c H R t Vout = 
L 

As with the electric field sensor, Equation (5) is the 
desired output for the H-Field sensor, and appropriate 
loading must be used to obtain this output. These rela- 
tionships govern the response of small passive receiving 
antennas. There are, perhaps, as many shapes that can be 
constructed using these basic equations as there are 
"standard "antenna shapes and configurations. However, 
as the shapes become more complicated, the mathemati- 
cal treatments of their performance can become 
extremely difficult, if not impossible, to handle. A 
number oi sensors with relatively simple geometries 
have been fabricated and tested with good results. 
Sketches of some of these senors are shown in Figure 5 
with a typical functional block diagram of the sensor 
unit, data link and receiver. 
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Figure 5. Existing Sensors — Block Diagram of Sensor Vnit, 
Data Link and Receiver 

1. Hemispherical Monopole over a ground plane. Its 
parameters are essentially the same as that of the 
spherical dipole with the exception that one of the 
hemispheres is replaced by the finite ground 
plane to obtain field measurements at a surface. 

2. Parallel Plate (MF — VHF, approximately 1 MHz 
- 200 MHz) surface field sensor measures the 
normal component of the E-Field to the surface 
over which it is positioned. It is used in the lower 
frequency application where a cylindrical mono- 
pole would be too long to be of practical use. 

3. Cylindrical Monopole (MF - UHF, approx- 
imately 10b MHz — 1 GHz) surface field sensor 
measures the normal component of the E-Field to 
the surface over which the sensor is positioned. 
The data transmission is coaxial cable, should be 
under the ground plane, or as close to it as possi- 
ble, to avoid perturbing the measured field. 

4. Triangular Monopole (UHF — SHF, approx- 
imately 1 GHz - 18 GHz) surface field sensor is a 
higher frequency version of the cylindrical 
monopole. 

5. Conical Monopole (same as number 4. ). 
6. Shielded Half-Loop (VHF - UHF, approximately 

200 MHz - 1 GHz) surface field sensor, measures 
magnetic fields tangential to the surface over 
which the sensor is placed. The gap reduces unde- 
sired E-Field response. 

7. Spherical Dipole (ELF — MF, DC to approxi- 
mately 1 MHz) free field sensor allows placement 
of an electronic circuit within its volume which 
processes the measured data into a frequency 
modulated signal, which is transmitted via fiber 
optic link. The spherical shape allows relatively 
easy analysis of the sensor and the fiber optic 
cable isolates the sensor. 

8. Single Dipole (MF — UHF, approximately 100 
kHz — 2 GHz) free field sensor measures the free 
field at relatively high frequencies. Isolation and 
data transmission are accomplished via high 
resistance transmission lines. 

9. Orthogonal Dipole parameters are essentially the 
same as for the single dipole, with the exception 
that three dipoles are mounted orthogonally to 
provide isotropicity. 

10. Single Bow-Tie (UHF - SHF, approximately 1 
GHz — 18 GHz). free field sensor is a higher fre- 
quency version of the single dipole. 

11. Conical Dipole (same as number 10). 
12. Single Loop (MF - VHF, approximately 1 MHz— 

200 MHz) free field sensor measures the mag- 
netic free field. Isolation and data transmission 
are accomplished via high resistance transmis- 
sion lines. 
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Inherent Problems of Small Sensors 
The sensors of today's technology are not immune to 

problems. Some of these problems are: 
1. Transmission data. There are three basic means to 

transmit the data from the sensor to the receiver; 
high resistance carbon impregnated plastic lines, 
coaxial cable, and fiber optic links. Limitations 
are described below. 
a) High resistance transmission lines — work 

only above 100 kHz, are subject to changes 
with vibration, and require that the measu. ed 
signal be rectified in the sensor. 

b) Coaxial cables — must be oriented parallel to 
the measured field or mounted on a ground 
plane. 

c) Fiber optics — require an optical transmitter 
at the sensor location. 

2. Fabrication difficulty — Not all probesof this type 
lend themselves to ease of fabrication — small 
changes in tolerance can lead to erroneous 
readings. 

8. Isotropicity — difficult to achieve, and must be 
accomplished by physically changing the orienta- 
tion of the sensor, with the exception of sensor 9. 

4. Sensitivity — decreases with size. 
5. Unwanted E-Field response in magnetic sensors 

and unwanted H-Field response in electric 
sensors. 

Although these problems are inherent in passive 
sensors of this type, attention to good engineering design 
and practice has alleviated many of these problems in 
sensors currently in use. Proper grounding of coaxial 
cables, orientation of cables, shielding, use of gaps in 
magnetic sensors, fiber optic data links, careful machin- 
ing of parts, and the use of highly stable components have 
all been employed to provide a high degree of accuracy in 
field measurements. This accuracy, however, does 
approach a limit, and researchers are constantly striving 
for improvement in these types of sensors and the devel- 
opment of new sensor concepts. 

New Sensor Concepts 

Researchers have continued to explore new concepts 
in sensor technology. Examples of these concepts are 
glass substrate, cryogenic, Hall effect, resonant scatter- 
ers, and others. These sensors are in various stages of 
development in government and private research pro- 
grams and are not further discussed in this paper, since 
most have rather specialized applications. 

Although these sensors may have their rightful place 
in EMC, one concept has recently emerged that appears to 
provide a completely new method of EM measurement 
that may have almost unlimited application. This concept 
employs a jacketed fiber optic cable as a sensing element 

with extremely high sensitivity for electric and magnetic 
fields. The fiber sensor works by magnetostrictive of elec- 
trostrictive jacketing of the light-carrying cable. When 
the cable is appropriately jacketed, the electric or mag- 
netic field causes an elongation of the cable, which 
changes the phase of the light transmitted through the 
fiber. This phase change is then converted by the use of an 
interferometer into the electric or magnetic field 
strength, as appropriate. A conceptual diagram of a fiber 
optic sensing system is shown in Figure 6. 
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A beam of light is transmitted through a single mode 
fiber optic cable, which is split into a reference fiber and 
a jacketed fiber by bottle couplers. The resultant two 
light beams are identical in phase. When the jacketed 
fiber is stressed by a magnetic or electric field, an elonga- 
tion of the optical fiber results. This causes a phase 
change in this fiber. The phase of the reference signal is 
compared with that of the signal in the jacketed cable in 
an interferometer and the phase differential is converted 
into the appropriate field strength units. 

The upper theoretical frequency limit of the fiber 
optic sensor is thought to be about 500 kHz. This limit is 
primarily based on the physical ability of the jacketing 
material to respond at a fast rate. Considering the enor- 
mous strides made in other fiber optic technology, it 
seems reasonable to believe that ongoing research will 
provide non-perturbing fiber optic sensors for the entire 
frequency spectrum. The sensitivity of the fiber optic 
sensor already betters that of conventional passive sen- 
sors by several orders of magnitude. 

Figure 6. Conceptual Diagram of Fiber Optic Sensing System 
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