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INTRODUCTION
Meeting the regulatory require-
ments is becoming increasingly
difficult for many electronic
products. Microprocessors are
becoming faster, and with this
increased performance comes
increased radiated emissionsdue
to the higher frequencies present
in the system. Often, the primary
sources of radiated emissions
which exceed the regulatory limits
include the microprocessor, the
oscillator circuits, and derived
signals such as address or data
buses. Filter components could
be added to signals to increase
their rise or fall times and thus
reduce the high frequency con-
tent. However, with micro-
processors having 32-bit wide
data and address buses, filtering
more than a few of these lines is
often physically impossible due
to space constraints. Any method
which would simultaneously
reduce the emissions from all
signals associated with a micro-
processor or microcontroller could
significantly reduce the cost of
complying with the regulatory
requirements. A technique to
accomplish this goal has recently
been developed. 12

In the late 1940s, development
began on a communication
technique to intentionally broad-
band a radio signal without
increasing the modulation. This
technique has come to be known
as spread spectrum transmis-
sion.3 The initial design objective
ofthis technique was secure, jam-
proof military communications.
It is still used extensively for this
purpose although commercial
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communication applications have
also been developed. The tech-
nique described here is analogous
to these communication spread
spectrum techniques by the
spreading of the energy in the
intended signal. The primary

clock used to provide timing

signals to a microprocessor or
other digital circuitis intentionally
broadbanded to reduce the
amplitudes of radiated emissions
that are the result of this clock
signal or any signal synchronized
toit. Thistechniqueishereinafter
referred to as Spread Spectrum
Clock Generation, or SSCG.

In a typical microprocessor-
based system, an external oscilla-
tor or clock generator is used to
provide the fundamental timing
signals. Since the signal is
approximately a trapezoidal pulse
train, harmonics are present at
each integer multiple of the
fundamental frequency. For
example, consider a trapezoidal
clock signal with a fundamental
frequency of 15 MHz. Harmonics
of this clock signal are found at
integer multiples of 15 MHz with
the amplitude of the harmonics
dependent upon the pulse rise
and fall times and the pulse width.

For a pulse train with a 50% duty
cycle, only the odd harmonics are
non-zero. However, it can be
shown that even slight deviations
from a duty cycle of 50% result in
significant even harmonics.
Deviations in the duty cycle can
be caused by temperature or load
variations, and can vary signifi-
cantly over brief periods of time.

In the frequency domain,
harmonics of the trapezoidal clock
signal are represented as delta
functions at each harmonic
frequency (Figure 1). The data
presented in Figure 1 are actual
spectral data measured with a
spectrum analyzer. The center
frequency of the spectrum ana-
lyzer is set to 315 MHz, which
correspondstothe21 st harmonic
ofthe fundamental frequency. The
SSCG modifies the spectrum of
the clock signal by frequency
modulating (FM) the clock signal.
With SSCG, the spectrum of the
clock signal is changed from a
delta function concentrated at the
frequency of the nth harmonic to
a series of sideband harmonics,
centered over the frequency of the
nth harmonic, but spread over a
much wider frequency span,
thereby reducing the amplitude
of the harmonic. The separation
ofthe sideband harmonicsis given
by the frequency ofthe modulating
signal.* As shown in Figure 1, by
applying the SSCG technique to
the 15 MHz clock signal, the peak
signal of the 21st harmonic is
reduced by approximately 10 dB
when compared to the standard
non-modulated signal.

The degree of attenuation
provided by SSCG is dependent
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upon the maximum frequency
deviation and the shape of the
waveform used to frequency
modulate the clock signal. The
15 MHz clock of Figure 1 is
modulated with a 30-kHz signal
and the peak deviation is +100
kHz. At the 21st harmonic, the
spread of the resulting harmonic
will be given as

2x 100 kHz x 21 =4.2 MHz

Since the spread increases with
each harmonic, the attenuation
provided by SSCG increases with
frequency.

It is important to note that
although the SSCG technique
consists of frequency modulation
of the clock signal, the waveform
used is not typical. Standard
waveforms such as a sine wave
provide little if any attenuation.
However, the modulating signal
was empirically derived and
provides optimum attenuation. -2
The amplitude of the modulated
harmonicis nearly uniformacross
the span of the harmonic (Figure
1). This is critical to optimizing the
attenuation provided by SSCG.

MEASURED RESULTS

In order to verify the attenuation
provided by SSCG, the experi-
mental implementation shown in
Figure 2 is used. The synthesizer
generates the frequency modu-
lated SSCG signal with a unique
modulating waveform generated
by an arbitrary waveform gener-
ator. The outputofthe synthesizer
is amplified and converted to a 5-
volt square wave by a zero-
crossing detection circuit. The
attenuation can be measured with
a spectrum analyzer or quasi-
peakreceiver directly, or the signal
can be transmitted via a fiber
optic link to the printed circuit
board of an actual electronic
product. By setting the peak
deviation tozero, astandard clock
signal is provided by the syn-
thesizer.
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The attenuation provided by
SSCG is found by measuring the
peak amplitude of each clock
harmonic with and without
modulation. The attenuation at
the nthharmonicis defined as the
ratio of the peak amplitude of the
nthharmonic without modulation
to the peak amplitude of the
harmonic with modulation. This
attenuation will be the same
regardless of the detector used;
that is, whether a quasi-peak
detector or the peak detector of a
spectrum analyzer is used. The
attenuation in dB measured using
the configuration of Figure 2

of +100 kHz.

At the higher frequencies in
Figures 3 through 5, a wide
variation in the attenuation is
observed, with the greatest
variation at a peak deviation of
+250 kHz. The lower attenuation
values occur at those frequencies
which, in the case of the nonmod-
ulated clock signal, correspond
to nulls in the Fourier series
expansion of the trapezoidal pulse
train. This variation in the
attenuation is the result of the
frequency modulation of the clock
signal shifting the frequency of

for fundamental clock fre-
quencies of 20 MHz, 32 MHz,
and 40 MHz is found in
Figures 3 through 5, re-
spectively. Data for two
deviations, +100 kHz and
+250 kHz, are given.

The attenuation values
found in Figures 3 through 5
have an initial value of
approximately O to 1 dB and
increase with frequency at a
slope of 10 dB/decade. The
attenuation obtained with a
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Figure 3. Measured Attenuation of a
20-MHz Trapezoidal Pulse Train With
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Figure 4. Measured Attenuation of a
32-MHz Trapezoidal Pulse Train With
+100 kHz and +250 kHz Deviations.
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Figure 5. Measured Attenuation of a
40-MHz Trapezoidal Pulse Train With
+100 kHz and +250 kHz Deviations.
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the null and changing the
amplitude of the Fourier series
coefficient by several dB.
However, large values of
attenuation are not necessary
at these frequencies since the
amplitudes are at least 10 dB
lower than adjacent har-
monics.

Prototypes of integrated
circuit modules which provide
an SSCG clock signal have
been evaluated and the results
correlate well with experi-
mental data. These dual-
inline, small outline integrated
circuit (SOIC) packages will
replace external crystals or
oscillators and will require
minimal external components,
including a reference crystal.

APPLICATIONS
SSCG has been tested in
personal computers and laser
printers. Attenuation of the
radiated emissions from these
products associated with
either the clock harmonics or
any signals derived from the
clock is on the order found in
Figures 3 through 5.
Consider the block diagram
of a typical personal computer
shownin Figure 6. The system
can be divided into several
subsystems, including the
central processing unit (CPU)
and math coprocessor, video,
I/Ocontroller, hard and floppy
drives, and memory. In this
system many of the sub-
systems operate at different
fundamental frequencies, with
the frequency of the CPU
subsystem usually the
greatest. Because of this, the
CPU and related components
often contribute the majority
of the radiated emissions of
the system. In an example
such as this, SSCG could be
used to reduce the emissions
of the CPU subsystem by
providing the fundamental
clocking signals for this sub-
system. Assuming an SSCG

source is used to provide the
fundamental clock signal to the
CPU, math coprocessor, and
cache controller, the emissions of
the complete system due to these
components could be attenuated
as shown in Figures 3 through 5.
Obviously, those emissions due
to the other components of the
system would be unaffected by
the introduction of SSCG.

In many cases, subsystems
such as those shown in Figure 6
communicate between them-
selves asynchronously. This
asynchronous protocol may allow
two subsystems to effectively
communicate where one sub-
system contains an SSCG source
and the other a standard clock
source. However, in order for two
universal asynchronous receiver
transmitters (UART) to com-
municate in this situation, it may
be necessary to limit the peak
deviation of the SSCG source to
maintain the tolerance required
by the receiving UART.

SSCG has additional effects
which may limitits usage in some
types of electronic products or
circuits. For example, in the
personal computer shown in
Figure 6, SSCG is not used to
provide the video clock. Unless
the modulating frequency is very
high, experimental results have
shown that using SSCG in the
video circuit results in an obvious
wavering in the video display. Any
waver detected by the human eye
inavideo screen is very annoying,
so the use of SSCG is not
recommended.

CONCLUSIONS

By applying techniques used in
communications to intentionally
broadband a radio signal, the
electromagnetic emissions of an
electronic product can bereduced.
The primary clock signal in a
product is intentionally broad-
banded with aunique modulating
waveform such that the peak
amplitude of the resultant signal,
when compared to the unmod-
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Figure 6. Block Diagram of an IBM-Compatible Personal Computer with

SSCG.

ulated signal, is significantly
reduced. The attenuation pro-
vided by the Spread Spectrum
Clock Generation, or SSCG, at a
given clock harmonic is depend-
ent upon the integer multiplier of
the clock fundamental which gives
the desired frequency. As the
frequency increases, the atten-
uation also increases due to the
increased spreading of the
harmonic energy. Measured data
demonstrates that attenuationon
the order of 10 dB is possible with
SSCG.

For those cases where changes
in the clock frequency are
detectable with undesirable
results such as video signals,
SSCG may not be aviable solution.
However, SSCG may be used in
other cases where the peak
deviation is limited.
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PREDICTING EMI FROM DC BUSES IN DIGITAL EQUIPMENT . . .

DC BUS ! S——.

Figure 4. Small dc Bus on a PC Card.
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Figure 5. Frequency-Impedance Characteristics of a
Decoupling Capacitor.

EXAMPLE #1: AN ECL DEVICE

A dcdistribution bus on a PC card of 7.5 c¢m can act as
a perfect 1/4 wave antenna at 1 GHz. Given a worst
case scenario on a double-sided PC card, and a
metallic straight line conductor of 7.5 cm carrying 1
mA of current at 1 GHz in free space, how much EMI
will be radiated at a distance of 10 meters?

The electric field for short cable in free space is: ®
_(n], sind di)
Eg(V/m) = —O—Zrk (13)
where
n = 377 ohms
Ip = current in amperes
dl = length in m

distance in m
A = wavelength in m

A o= cff

¢ = speed of light in gigameter
f = frequency in GHz

377x0.001x1x0.035)

- 0.0047
(2x10x0.3) 0.0047 V/m

Eg(V/m) =4
(14)

Converting to dBuV/m,

E4(dBuLV/m) = 20 log (4700/1) = 73.4 (dBuV/m)( |
15
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Continued

Thus, a de distribution bus carrying 1 mA of current
at 1 GHz can radiate as much as 73.4 dBuV/m at a
distance of 10 m. A Class B device is limited by FCC
regulation to radiate a maximum of 43.3 dBuV/m at
a distance of 10 m. As stated, this is a worst case
scenario. Since other metallic conductors arealways
present nearby, the actual radiated emission will be
less.

The calculations in all examples are for obtaining
an approximation only under worst case conditions.
Nearby ground conductors will lower the radiated
electric field. For exact solutions an antenna
engineering text should be consulted.

EXAMPLE #2: A CMOS DEVICE

A dc distribution bus similar to the one in Example
#1 is cartying 100 pA of current (one tenth the
current in Example # 1} at 15 GHz. How much EMI
is radiated at a distance of 10 meters? The same
equation is used as in Example #1.

(377x0.0001x1x0.075)
Be(V/m) =——5x70x0.02)

= 0.00705 V/m (16)

E(dBuV/m) = 20 log (7050/1) = 76.9 (dBuV/m)
(17)

Thus, carrying 0.1 pA of current at 15 GHz can
radiate as much as 76.9 dBuV/m at a distance of
10 m. The allowed EMI limit is the same as in
Example #1.

DESIGN COUNTERMEASURES

Observe that in the second example the current
tflowing in the dc bus is only 1/10 of the current in
the first example, but the frequency is 15 times
higher. With a cerarnic bypass capacitor, the solution
is complicated because the frequency impedance
characteristics of ceramic capacitors can be low —
below 100 MHz — but it is increasingly difficult to
find capacitors with low impedance as frequency
increases (Figure 5). The new surface mount
technology (SMT) capacitors possess better
frequency-impedance characteristics. The ultimate
solution is for the chip manufacturer to design the
decoupling capacitors directly on the chip surface.
However, this will decrease silicon yield, and chip
manufacturers do not like to decrease silicon yield
because of increased cost per device. They would
rather let the circuit design engineers cope with
EMC/EMI problems.

Alaminar bus acts as an efficient, low inductance
transmission line (poor antenna) which minimizes
EMI radiation (Figure 6).% Opposing currents moving
in the two conductorsreduce the associated magnetic
fields to a very low value.
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PREDICTING EMI FROM DC BUSES IN DIGITAL EQUIPMENT ... Continued

Dielectric
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in Printed Circuit

Copper Strip
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Figure 6. Laminar DC Bus Design Acts as a Poor Antenna.

Multi-layer PC card technology
allows the designers tolay out the
dc bus so that the trace with the
dielectric material and the ground
plane is an efficient transmission
line with the least impedance
mismatch. This configuration
favors better decoupling of
switching transients. Once the
dielectric constant and the
thickness of the PC glass are
known, one is able to calculate
how wide a PC trace must be in
order to act as an efficient
transmission line. The copper
thickness determines the current-
carrying capacity and the voltage
drop. Such a laminar pair of de¢
buses makes a very poor trans-
mitting antenna and the resulting
EMI radiation will be low. Con-
versely itwillmake a poor receiving
antenna for EMI susceptibility.

MEDIUM-SIZE DC BUS ON
PC MOTHER BOARD

When clock cards and data line
driver cards are plugged intoa PC
mother board, the switching
currents fromthe dcbus of the PC
card carry high frequency sharp
rising pulses onto the PC mother
board dc bus. Because of its
larger dimensions a dc bus on a
large board can radiate more EMI.
It also serves as a good receiving
antenna for unwanted radiated
EMI, distributing it to different
cards and input terminals of gates
and other components. Inter-
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ference-capturing electronic
deviceswith ECL circuits hasbeen
known to designers for some time.
CMOS switching devices can
create 100 times more havoc
because of their ultrafastrise time
and their larger voltage swing.
With ECL logic the typical voltage
swing is 0.8 volt. With CMOS
technology the voltage swing can
beas high as2.5volt. Thecurrent
consumption is lower on CMOS
devices, but since customers want
better and faster perforrnance with
more options, the total current
consumption is not diminishing;
itis growing. Even staggering the
switching times cannot lower the
total EMI radiated (according to
the law of averages).

Decouplingboard dcbuses from
card dcbuses seems to help. Mui-
tiple plane PC board technology
is another solution, but the cost
goes up again. The design
engineer has to become increas-
ingly aware of EMC/EMI.

MEASUREMENTS OF NEAR
FIELD EMI RADIATION
Ifaspectrum analyzer and anear-
field probe is available, it is
possible to hold the near-field
probe to the PC card or board
traces and observe the level of
EMI emission during operation.
The circuit designer can then try
different decoupling capacitors
and can observe the magnitude of
the radiated EMI signals. The

near-field probe measurements
will give an indication of the EMI
magnitude and an approximation
can be made as to how much
reduction will be needed to bring
the EMI emission down to
acceptable levels to meet the
requirements of regulatory agen-
cies under a far-field test con-
dition.

Another good use of the near-
field probe is to test enclosure
EMI leaks and shielding effec-
tiveness. The probe can reveal
excessive EMI leakages at cable
entrances into the shielded
enclosure, and can identify poor
door gasket design.

If a LISN (Line Impedance Sta-
bilization Network) is available, the
conducted EMI can be measured to
determine if it complies with the
limits set by the regulatory agencies
for conducted EMI.

CONCLUSIONS

The EMC aspects and con-
sequences of the dc bus have
been underestimated. Electronic
circuit designers become acutely
aware of EMI/EMC problems
when the electronic product does
not pass the regulatory agencies'
compliance tests. The traditional
and easiest fix is to install
decoupling capacitors.

The PC card and PC board
designers must develop a greater
awareness of how to lay out PC
patterns to make the dc bus a
laminar transmission line with
low EMI radiation. The dc bus
musthave “bad antenna” charac-
teristics.

PC card/board layout software
programs must incorporate EMI/
EMC principles to prevent the dc
bus from becoming an unin-
tentional radiating/receiving
antenna.

Decoupling capacitors with
much higher frequency-imped-
ance characteristics will be
needed to help reduce EMI in
cost-effective products. SMT
capacitors cover higher frequency
requirements.
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The chip designer mustbecome
acquainted with all aspects of the
new EC Directives since with the
ultrafast CMOS devices, de-
coupling capacitors will have to
be “on-chip surface designed” to
be more effective. This is possible
with six-metal laminar CMOS
technology. Better ESD and pulse
burst immunity will also result.

To assure that electronic devic-
es can function without interfer-
ing with each other, EMC mustbe
designed into each device. Since
most electronic devices have dc
buses to connect power sources
to the electronic circuitry, switch-
ing currents, with their high fre-
quency harmonics, are radiated

as noise signals from the dc bus.
Regardless ofhow small the equip-
ment is, the length of the dc bus
is a finite length, and a finite
length of a metallic conductor
can actas anunintentional trans-
mitting and receiving antenna. If
the interference is strong enough
it can interrupt the normal func-
tioning of the electronic device.
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cpe PYRAMIDAL FERRITE 'FERRITE HYBRID |
FEATURES '‘ABSORBER TILES GRID ABSORBER
QOutside dimensions 3 3 3 3
(approx.) 7.5x52x3.6m 7.3x3.4x33m 7.3x3.4x3.3m 7.9x4.0x3.6m
Inside dimensions 3 3 3 3
(approx.) 6.3x4.0 x2.8m 70x3.1 x3.1m 7.0x3.1 x3.1m 7.0x3.1x3.1m
Applicable IEC 801-3 IEC 801-3 IEC 801-3 IEC 801-3

specifications

and ENV 50140

and ENV 50140

and ENV 50140

and ENV 50140

EMI pre-compliance

performance Poor Good Very good Very good
Nonflammability Reduced Very good Very good Reduced
Risk %farrr:ea%heanical Tangible Negligible Negligible Tangible
Floor absorbers Moveable Fixed Fixed Fixed
Freqﬁ’r?',‘v“:gizra”ge 80 to >1000 30 to 1000 30 to 2500 30 to 18000
Relative price 1.0 1.4 2.0 2.3

Table 2. Compact Diagnostic Chambers Compared.

ponent, there are numerous pos-
sible interactions between the
EUT and the CDC. Therefore all
CDCs have been built based on
the same physical facts, but none
of them are absolutely identical.

Table 2 shows the most impor-
tant parameters of the compact
diagnostic chamber.
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SUMMARY

The compact anechoic chamber
is a flexible and cost-effective so-
lution for radiated susceptibility
testing. Adaption to the needs of
the customer and the equipment
under test can be made relatively
easily due to the flexibility of the
design.
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